Metamath Proof Explorer
		
		
		
		Description:  Closure inference for scalar multiplication.  (Contributed by NM, 1-Aug-1999)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | hvmulcl.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | hvmulcl.2 | ⊢ 𝐵  ∈   ℋ | 
				
					|  | Assertion | hvmulcli | ⊢  ( 𝐴  ·ℎ  𝐵 )  ∈   ℋ | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvmulcl.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | hvmulcl.2 | ⊢ 𝐵  ∈   ℋ | 
						
							| 3 |  | hvmulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( 𝐴  ·ℎ  𝐵 )  ∈   ℋ ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴  ·ℎ  𝐵 )  ∈   ℋ |