Metamath Proof Explorer
Description: Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
hvmulcl.1 |
⊢ 𝐴 ∈ ℂ |
|
|
hvmulcl.2 |
⊢ 𝐵 ∈ ℋ |
|
Assertion |
hvmulcli |
⊢ ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
hvmulcl.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
hvmulcl.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ |