Metamath Proof Explorer


Theorem hvmulcli

Description: Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvmulcl.1 𝐴 ∈ ℂ
hvmulcl.2 𝐵 ∈ ℋ
Assertion hvmulcli ( 𝐴 · 𝐵 ) ∈ ℋ

Proof

Step Hyp Ref Expression
1 hvmulcl.1 𝐴 ∈ ℂ
2 hvmulcl.2 𝐵 ∈ ℋ
3 hvmulcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 · 𝐵 ) ∈ ℋ )
4 1 2 3 mp2an ( 𝐴 · 𝐵 ) ∈ ℋ