| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mulcom | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							oveq1d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  ·  𝐵 )  ·ℎ  𝐶 )  =  ( ( 𝐵  ·  𝐴 )  ·ℎ  𝐶 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							3adant3 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  ·  𝐵 )  ·ℎ  𝐶 )  =  ( ( 𝐵  ·  𝐴 )  ·ℎ  𝐶 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ax-hvmulass | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐴  ·  𝐵 )  ·ℎ  𝐶 )  =  ( 𝐴  ·ℎ  ( 𝐵  ·ℎ  𝐶 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ax-hvmulass | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐵  ·  𝐴 )  ·ℎ  𝐶 )  =  ( 𝐵  ·ℎ  ( 𝐴  ·ℎ  𝐶 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3com12 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( ( 𝐵  ·  𝐴 )  ·ℎ  𝐶 )  =  ( 𝐵  ·ℎ  ( 𝐴  ·ℎ  𝐶 ) ) )  | 
						
						
							| 7 | 
							
								3 4 6
							 | 
							3eqtr3d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈   ℋ )  →  ( 𝐴  ·ℎ  ( 𝐵  ·ℎ  𝐶 ) )  =  ( 𝐵  ·ℎ  ( 𝐴  ·ℎ  𝐶 ) ) )  |