Metamath Proof Explorer


Theorem hvmulcomi

Description: Scalar multiplication commutative law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvmulcom.1 𝐴 ∈ ℂ
hvmulcom.2 𝐵 ∈ ℂ
hvmulcom.3 𝐶 ∈ ℋ
Assertion hvmulcomi ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐵 · ( 𝐴 · 𝐶 ) )

Proof

Step Hyp Ref Expression
1 hvmulcom.1 𝐴 ∈ ℂ
2 hvmulcom.2 𝐵 ∈ ℂ
3 hvmulcom.3 𝐶 ∈ ℋ
4 hvmulcom ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐵 · ( 𝐴 · 𝐶 ) ) )
5 1 2 3 4 mp3an ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐵 · ( 𝐴 · 𝐶 ) )