Metamath Proof Explorer


Theorem hvmulex

Description: The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hvmulex · ∈ V

Proof

Step Hyp Ref Expression
1 ax-hfvmul · : ( ℂ × ℋ ) ⟶ ℋ
2 cnex ℂ ∈ V
3 ax-hilex ℋ ∈ V
4 2 3 xpex ( ℂ × ℋ ) ∈ V
5 fex ( ( · : ( ℂ × ℋ ) ⟶ ℋ ∧ ( ℂ × ℋ ) ∈ V ) → · ∈ V )
6 1 4 5 mp2an · ∈ V