Metamath Proof Explorer
Description: The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
hvmulex |
⊢ ·ℎ ∈ V |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hfvmul |
⊢ ·ℎ : ( ℂ × ℋ ) ⟶ ℋ |
2 |
|
cnex |
⊢ ℂ ∈ V |
3 |
|
ax-hilex |
⊢ ℋ ∈ V |
4 |
2 3
|
xpex |
⊢ ( ℂ × ℋ ) ∈ V |
5 |
|
fex |
⊢ ( ( ·ℎ : ( ℂ × ℋ ) ⟶ ℋ ∧ ( ℂ × ℋ ) ∈ V ) → ·ℎ ∈ V ) |
6 |
1 4 5
|
mp2an |
⊢ ·ℎ ∈ V |