Step |
Hyp |
Ref |
Expression |
1 |
|
hvnegdi.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
hvnegdi.2 |
⊢ 𝐵 ∈ ℋ |
3 |
1 2
|
hvsubvali |
⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
4 |
3
|
oveq2i |
⊢ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( - 1 ·ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
5 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
6 |
5 2
|
hvmulcli |
⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
7 |
5 1 6
|
hvdistr1i |
⊢ ( - 1 ·ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( - 1 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
8 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
9 |
8
|
oveq1i |
⊢ ( ( - 1 · - 1 ) ·ℎ 𝐵 ) = ( 1 ·ℎ 𝐵 ) |
10 |
5 5 2
|
hvmulassi |
⊢ ( ( - 1 · - 1 ) ·ℎ 𝐵 ) = ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) |
11 |
|
ax-hvmulid |
⊢ ( 𝐵 ∈ ℋ → ( 1 ·ℎ 𝐵 ) = 𝐵 ) |
12 |
2 11
|
ax-mp |
⊢ ( 1 ·ℎ 𝐵 ) = 𝐵 |
13 |
9 10 12
|
3eqtr3i |
⊢ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐵 |
14 |
13
|
oveq1i |
⊢ ( ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = ( 𝐵 +ℎ ( - 1 ·ℎ 𝐴 ) ) |
15 |
5 1
|
hvmulcli |
⊢ ( - 1 ·ℎ 𝐴 ) ∈ ℋ |
16 |
5 6
|
hvmulcli |
⊢ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ ℋ |
17 |
15 16
|
hvcomi |
⊢ ( ( - 1 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ 𝐴 ) ) |
18 |
2 1
|
hvsubvali |
⊢ ( 𝐵 −ℎ 𝐴 ) = ( 𝐵 +ℎ ( - 1 ·ℎ 𝐴 ) ) |
19 |
14 17 18
|
3eqtr4i |
⊢ ( ( - 1 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐵 −ℎ 𝐴 ) |
20 |
4 7 19
|
3eqtri |
⊢ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 −ℎ 𝐴 ) |