Metamath Proof Explorer


Theorem hvnegid

Description: Addition of negative of a vector to itself. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion hvnegid ( 𝐴 ∈ ℋ → ( 𝐴 + ( - 1 · 𝐴 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 hvsubval ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 𝐴 ) = ( 𝐴 + ( - 1 · 𝐴 ) ) )
2 1 anidms ( 𝐴 ∈ ℋ → ( 𝐴 𝐴 ) = ( 𝐴 + ( - 1 · 𝐴 ) ) )
3 hvsubid ( 𝐴 ∈ ℋ → ( 𝐴 𝐴 ) = 0 )
4 2 3 eqtr3d ( 𝐴 ∈ ℋ → ( 𝐴 + ( - 1 · 𝐴 ) ) = 0 )