| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvaddcl | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝐴  +ℎ  𝐵 )  ∈   ℋ ) | 
						
							| 2 |  | hvsubval | ⊢ ( ( ( 𝐴  +ℎ  𝐵 )  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐵 )  −ℎ  𝐵 )  =  ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( - 1  ·ℎ  𝐵 ) ) ) | 
						
							| 3 | 1 2 | sylancom | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐵 )  −ℎ  𝐵 )  =  ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( - 1  ·ℎ  𝐵 ) ) ) | 
						
							| 4 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 5 |  | hvmulcl | ⊢ ( ( - 1  ∈  ℂ  ∧  𝐵  ∈   ℋ )  →  ( - 1  ·ℎ  𝐵 )  ∈   ℋ ) | 
						
							| 6 | 4 5 | mpan | ⊢ ( 𝐵  ∈   ℋ  →  ( - 1  ·ℎ  𝐵 )  ∈   ℋ ) | 
						
							| 7 | 6 | ancli | ⊢ ( 𝐵  ∈   ℋ  →  ( 𝐵  ∈   ℋ  ∧  ( - 1  ·ℎ  𝐵 )  ∈   ℋ ) ) | 
						
							| 8 |  | ax-hvass | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ  ∧  ( - 1  ·ℎ  𝐵 )  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( - 1  ·ℎ  𝐵 ) )  =  ( 𝐴  +ℎ  ( 𝐵  +ℎ  ( - 1  ·ℎ  𝐵 ) ) ) ) | 
						
							| 9 | 8 | 3expb | ⊢ ( ( 𝐴  ∈   ℋ  ∧  ( 𝐵  ∈   ℋ  ∧  ( - 1  ·ℎ  𝐵 )  ∈   ℋ ) )  →  ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( - 1  ·ℎ  𝐵 ) )  =  ( 𝐴  +ℎ  ( 𝐵  +ℎ  ( - 1  ·ℎ  𝐵 ) ) ) ) | 
						
							| 10 | 7 9 | sylan2 | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( - 1  ·ℎ  𝐵 ) )  =  ( 𝐴  +ℎ  ( 𝐵  +ℎ  ( - 1  ·ℎ  𝐵 ) ) ) ) | 
						
							| 11 |  | hvnegid | ⊢ ( 𝐵  ∈   ℋ  →  ( 𝐵  +ℎ  ( - 1  ·ℎ  𝐵 ) )  =  0ℎ ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝐵  ∈   ℋ  →  ( 𝐴  +ℎ  ( 𝐵  +ℎ  ( - 1  ·ℎ  𝐵 ) ) )  =  ( 𝐴  +ℎ  0ℎ ) ) | 
						
							| 13 |  | ax-hvaddid | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  +ℎ  0ℎ )  =  𝐴 ) | 
						
							| 14 | 12 13 | sylan9eqr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝐴  +ℎ  ( 𝐵  +ℎ  ( - 1  ·ℎ  𝐵 ) ) )  =  𝐴 ) | 
						
							| 15 | 3 10 14 | 3eqtrd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  +ℎ  𝐵 )  −ℎ  𝐵 )  =  𝐴 ) |