Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hvpncan2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hvcom | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 +ℎ 𝐴 ) = ( 𝐴 +ℎ 𝐵 ) ) | |
2 | 1 | oveq1d | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 +ℎ 𝐴 ) −ℎ 𝐴 ) = ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) ) |
3 | hvpncan | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 +ℎ 𝐴 ) −ℎ 𝐴 ) = 𝐵 ) | |
4 | 2 3 | eqtr3d | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) = 𝐵 ) |
5 | 4 | ancoms | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) = 𝐵 ) |