Metamath Proof Explorer


Theorem hvpncan2

Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion hvpncan2 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 ax-hvcom ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) )
2 1 oveq1d ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 + 𝐴 ) − 𝐴 ) = ( ( 𝐴 + 𝐵 ) − 𝐴 ) )
3 hvpncan ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 + 𝐴 ) − 𝐴 ) = 𝐵 )
4 2 3 eqtr3d ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 )
5 4 ancoms ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 )