Metamath Proof Explorer


Theorem hvpncan3

Description: Subtraction and addition of equal Hilbert space vectors. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Assertion hvpncan3 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 + ( 𝐵 𝐴 ) ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 hvaddsubass ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = ( 𝐴 + ( 𝐵 𝐴 ) ) )
2 1 3anidm13 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = ( 𝐴 + ( 𝐵 𝐴 ) ) )
3 hvpncan2 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 )
4 2 3 eqtr3d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 + ( 𝐵 𝐴 ) ) = 𝐵 )