Description: Subtraction and addition of equal Hilbert space vectors. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hvpncan3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 −ℎ 𝐴 ) ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvaddsubass | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) = ( 𝐴 +ℎ ( 𝐵 −ℎ 𝐴 ) ) ) | |
2 | 1 | 3anidm13 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) = ( 𝐴 +ℎ ( 𝐵 −ℎ 𝐴 ) ) ) |
3 | hvpncan2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) = 𝐵 ) | |
4 | 2 3 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 −ℎ 𝐴 ) ) = 𝐵 ) |