Description: Subtraction and addition of equal Hilbert space vectors. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvpncan3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 −ℎ 𝐴 ) ) = 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hvaddsubass | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) = ( 𝐴 +ℎ ( 𝐵 −ℎ 𝐴 ) ) ) | |
| 2 | 1 | 3anidm13 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) = ( 𝐴 +ℎ ( 𝐵 −ℎ 𝐴 ) ) ) | 
| 3 | hvpncan2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) = 𝐵 ) | |
| 4 | 2 3 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 −ℎ 𝐴 ) ) = 𝐵 ) |