Description: Subtraction of a zero vector. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsub0 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 0ℎ ) = 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 2 | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 0ℎ ∈ ℋ ) → ( 𝐴 −ℎ 0ℎ ) = ( 𝐴 +ℎ ( - 1 ·ℎ 0ℎ ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 0ℎ ) = ( 𝐴 +ℎ ( - 1 ·ℎ 0ℎ ) ) ) | 
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | hvmul0 | ⊢ ( - 1 ∈ ℂ → ( - 1 ·ℎ 0ℎ ) = 0ℎ ) | |
| 6 | 4 5 | ax-mp | ⊢ ( - 1 ·ℎ 0ℎ ) = 0ℎ | 
| 7 | 6 | oveq2i | ⊢ ( 𝐴 +ℎ ( - 1 ·ℎ 0ℎ ) ) = ( 𝐴 +ℎ 0ℎ ) | 
| 8 | 3 7 | eqtrdi | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 0ℎ ) = ( 𝐴 +ℎ 0ℎ ) ) | 
| 9 | ax-hvaddid | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 +ℎ 0ℎ ) = 𝐴 ) | |
| 10 | 8 9 | eqtrd | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 0ℎ ) = 𝐴 ) |