Description: Subtraction of a zero vector. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hvsub0 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 0ℎ ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
2 | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 0ℎ ∈ ℋ ) → ( 𝐴 −ℎ 0ℎ ) = ( 𝐴 +ℎ ( - 1 ·ℎ 0ℎ ) ) ) | |
3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 0ℎ ) = ( 𝐴 +ℎ ( - 1 ·ℎ 0ℎ ) ) ) |
4 | neg1cn | ⊢ - 1 ∈ ℂ | |
5 | hvmul0 | ⊢ ( - 1 ∈ ℂ → ( - 1 ·ℎ 0ℎ ) = 0ℎ ) | |
6 | 4 5 | ax-mp | ⊢ ( - 1 ·ℎ 0ℎ ) = 0ℎ |
7 | 6 | oveq2i | ⊢ ( 𝐴 +ℎ ( - 1 ·ℎ 0ℎ ) ) = ( 𝐴 +ℎ 0ℎ ) |
8 | 3 7 | eqtrdi | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 0ℎ ) = ( 𝐴 +ℎ 0ℎ ) ) |
9 | ax-hvaddid | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 +ℎ 0ℎ ) = 𝐴 ) | |
10 | 8 9 | eqtrd | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 0ℎ ) = 𝐴 ) |