Metamath Proof Explorer


Theorem hvsub32

Description: Hilbert vector space commutative/associative law. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hvsub32 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 𝐵 ) − 𝐶 ) = ( ( 𝐴 𝐶 ) − 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ax-hvcom ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) )
2 1 3adant1 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) )
3 2 oveq2d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ( 𝐵 + 𝐶 ) ) = ( 𝐴 ( 𝐶 + 𝐵 ) ) )
4 hvsubass ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 𝐵 ) − 𝐶 ) = ( 𝐴 ( 𝐵 + 𝐶 ) ) )
5 hvsubass ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 𝐶 ) − 𝐵 ) = ( 𝐴 ( 𝐶 + 𝐵 ) ) )
6 5 3com23 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 𝐶 ) − 𝐵 ) = ( 𝐴 ( 𝐶 + 𝐵 ) ) )
7 3 4 6 3eqtr4d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 𝐵 ) − 𝐶 ) = ( ( 𝐴 𝐶 ) − 𝐵 ) )