| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hvnegdi.1 | ⊢ 𝐴  ∈   ℋ | 
						
							| 2 |  | hvnegdi.2 | ⊢ 𝐵  ∈   ℋ | 
						
							| 3 |  | hvaddcan.3 | ⊢ 𝐶  ∈   ℋ | 
						
							| 4 | 1 2 | hvsubvali | ⊢ ( 𝐴  −ℎ  𝐵 )  =  ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) ) | 
						
							| 5 | 4 | eqeq1i | ⊢ ( ( 𝐴  −ℎ  𝐵 )  =  𝐶  ↔  ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) )  =  𝐶 ) | 
						
							| 6 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 7 | 6 2 | hvmulcli | ⊢ ( - 1  ·ℎ  𝐵 )  ∈   ℋ | 
						
							| 8 | 2 1 7 | hvadd12i | ⊢ ( 𝐵  +ℎ  ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) ) )  =  ( 𝐴  +ℎ  ( 𝐵  +ℎ  ( - 1  ·ℎ  𝐵 ) ) ) | 
						
							| 9 | 2 | hvnegidi | ⊢ ( 𝐵  +ℎ  ( - 1  ·ℎ  𝐵 ) )  =  0ℎ | 
						
							| 10 | 9 | oveq2i | ⊢ ( 𝐴  +ℎ  ( 𝐵  +ℎ  ( - 1  ·ℎ  𝐵 ) ) )  =  ( 𝐴  +ℎ  0ℎ ) | 
						
							| 11 |  | ax-hvaddid | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  +ℎ  0ℎ )  =  𝐴 ) | 
						
							| 12 | 1 11 | ax-mp | ⊢ ( 𝐴  +ℎ  0ℎ )  =  𝐴 | 
						
							| 13 | 8 10 12 | 3eqtri | ⊢ ( 𝐵  +ℎ  ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) ) )  =  𝐴 | 
						
							| 14 | 13 | eqeq1i | ⊢ ( ( 𝐵  +ℎ  ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) ) )  =  ( 𝐵  +ℎ  𝐶 )  ↔  𝐴  =  ( 𝐵  +ℎ  𝐶 ) ) | 
						
							| 15 | 1 7 | hvaddcli | ⊢ ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) )  ∈   ℋ | 
						
							| 16 | 2 15 3 | hvaddcani | ⊢ ( ( 𝐵  +ℎ  ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) ) )  =  ( 𝐵  +ℎ  𝐶 )  ↔  ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) )  =  𝐶 ) | 
						
							| 17 |  | eqcom | ⊢ ( 𝐴  =  ( 𝐵  +ℎ  𝐶 )  ↔  ( 𝐵  +ℎ  𝐶 )  =  𝐴 ) | 
						
							| 18 | 14 16 17 | 3bitr3i | ⊢ ( ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) )  =  𝐶  ↔  ( 𝐵  +ℎ  𝐶 )  =  𝐴 ) | 
						
							| 19 | 5 18 | bitri | ⊢ ( ( 𝐴  −ℎ  𝐵 )  =  𝐶  ↔  ( 𝐵  +ℎ  𝐶 )  =  𝐴 ) |