Step |
Hyp |
Ref |
Expression |
1 |
|
hvnegdi.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
hvnegdi.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
hvaddcan.3 |
⊢ 𝐶 ∈ ℋ |
4 |
1 2
|
hvsubvali |
⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
5 |
4
|
eqeq1i |
⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐶 ) |
6 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
7 |
6 2
|
hvmulcli |
⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
8 |
2 1 7
|
hvadd12i |
⊢ ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
9 |
2
|
hvnegidi |
⊢ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ |
10 |
9
|
oveq2i |
⊢ ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐴 +ℎ 0ℎ ) |
11 |
|
ax-hvaddid |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 +ℎ 0ℎ ) = 𝐴 ) |
12 |
1 11
|
ax-mp |
⊢ ( 𝐴 +ℎ 0ℎ ) = 𝐴 |
13 |
8 10 12
|
3eqtri |
⊢ ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = 𝐴 |
14 |
13
|
eqeq1i |
⊢ ( ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐵 +ℎ 𝐶 ) ↔ 𝐴 = ( 𝐵 +ℎ 𝐶 ) ) |
15 |
1 7
|
hvaddcli |
⊢ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ ℋ |
16 |
2 15 3
|
hvaddcani |
⊢ ( ( 𝐵 +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐵 +ℎ 𝐶 ) ↔ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐶 ) |
17 |
|
eqcom |
⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) |
18 |
14 16 17
|
3bitr3i |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) |
19 |
5 18
|
bitri |
⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) |