Metamath Proof Explorer


Theorem hvsubaddi

Description: Relationship between vector subtraction and addition. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvnegdi.1 𝐴 ∈ ℋ
hvnegdi.2 𝐵 ∈ ℋ
hvaddcan.3 𝐶 ∈ ℋ
Assertion hvsubaddi ( ( 𝐴 𝐵 ) = 𝐶 ↔ ( 𝐵 + 𝐶 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 hvnegdi.1 𝐴 ∈ ℋ
2 hvnegdi.2 𝐵 ∈ ℋ
3 hvaddcan.3 𝐶 ∈ ℋ
4 1 2 hvsubvali ( 𝐴 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) )
5 4 eqeq1i ( ( 𝐴 𝐵 ) = 𝐶 ↔ ( 𝐴 + ( - 1 · 𝐵 ) ) = 𝐶 )
6 neg1cn - 1 ∈ ℂ
7 6 2 hvmulcli ( - 1 · 𝐵 ) ∈ ℋ
8 2 1 7 hvadd12i ( 𝐵 + ( 𝐴 + ( - 1 · 𝐵 ) ) ) = ( 𝐴 + ( 𝐵 + ( - 1 · 𝐵 ) ) )
9 2 hvnegidi ( 𝐵 + ( - 1 · 𝐵 ) ) = 0
10 9 oveq2i ( 𝐴 + ( 𝐵 + ( - 1 · 𝐵 ) ) ) = ( 𝐴 + 0 )
11 ax-hvaddid ( 𝐴 ∈ ℋ → ( 𝐴 + 0 ) = 𝐴 )
12 1 11 ax-mp ( 𝐴 + 0 ) = 𝐴
13 8 10 12 3eqtri ( 𝐵 + ( 𝐴 + ( - 1 · 𝐵 ) ) ) = 𝐴
14 13 eqeq1i ( ( 𝐵 + ( 𝐴 + ( - 1 · 𝐵 ) ) ) = ( 𝐵 + 𝐶 ) ↔ 𝐴 = ( 𝐵 + 𝐶 ) )
15 1 7 hvaddcli ( 𝐴 + ( - 1 · 𝐵 ) ) ∈ ℋ
16 2 15 3 hvaddcani ( ( 𝐵 + ( 𝐴 + ( - 1 · 𝐵 ) ) ) = ( 𝐵 + 𝐶 ) ↔ ( 𝐴 + ( - 1 · 𝐵 ) ) = 𝐶 )
17 eqcom ( 𝐴 = ( 𝐵 + 𝐶 ) ↔ ( 𝐵 + 𝐶 ) = 𝐴 )
18 14 16 17 3bitr3i ( ( 𝐴 + ( - 1 · 𝐵 ) ) = 𝐶 ↔ ( 𝐵 + 𝐶 ) = 𝐴 )
19 5 18 bitri ( ( 𝐴 𝐵 ) = 𝐶 ↔ ( 𝐵 + 𝐶 ) = 𝐴 )