Step |
Hyp |
Ref |
Expression |
1 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
2 |
|
hvmulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
3 |
1 2
|
mpan |
⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
4 |
|
hvaddsubass |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ 𝐶 ) = ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) ) ) |
5 |
3 4
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ 𝐶 ) = ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) ) ) |
6 |
|
hvsubval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
8 |
7
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ 𝐶 ) ) |
9 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → 𝐴 ∈ ℋ ) |
10 |
|
hvaddcl |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) |
11 |
10
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) |
12 |
|
hvsubval |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) → ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) ) ) |
13 |
9 11 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) ) ) |
14 |
|
hvsubval |
⊢ ( ( ( - 1 ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
15 |
3 14
|
sylan |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
16 |
15
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
17 |
|
ax-hvdistr1 |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
18 |
1 17
|
mp3an1 |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
19 |
18
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
20 |
16 19
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) = ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) ) |
21 |
20
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) ) ) |
22 |
13 21
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) ) ) |
23 |
5 8 22
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) ) |