Metamath Proof Explorer


Theorem hvsubassi

Description: Hilbert vector space associative law for subtraction. (Contributed by NM, 7-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hvass.1 𝐴 ∈ ℋ
hvass.2 𝐵 ∈ ℋ
hvass.3 𝐶 ∈ ℋ
Assertion hvsubassi ( ( 𝐴 𝐵 ) − 𝐶 ) = ( 𝐴 ( 𝐵 + 𝐶 ) )

Proof

Step Hyp Ref Expression
1 hvass.1 𝐴 ∈ ℋ
2 hvass.2 𝐵 ∈ ℋ
3 hvass.3 𝐶 ∈ ℋ
4 hvsubass ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 𝐵 ) − 𝐶 ) = ( 𝐴 ( 𝐵 + 𝐶 ) ) )
5 1 2 3 4 mp3an ( ( 𝐴 𝐵 ) − 𝐶 ) = ( 𝐴 ( 𝐵 + 𝐶 ) )