Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Axiomatization of complex pre-Hilbert spaces
Vector operations
hvsubassi
Metamath Proof Explorer
Description: Hilbert vector space associative law for subtraction. (Contributed by NM , 7-Oct-1999) (Revised by Mario Carneiro , 15-May-2014)
(New usage is discouraged.)
Ref
Expression
Hypotheses
hvass.1
⊢ 𝐴 ∈ ℋ
hvass.2
⊢ 𝐵 ∈ ℋ
hvass.3
⊢ 𝐶 ∈ ℋ
Assertion
hvsubassi
⊢ ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) )
Proof
Step
Hyp
Ref
Expression
1
hvass.1
⊢ 𝐴 ∈ ℋ
2
hvass.2
⊢ 𝐵 ∈ ℋ
3
hvass.3
⊢ 𝐶 ∈ ℋ
4
hvsubass
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) )
5
1 2 3 4
mp3an
⊢ ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) )