Step |
Hyp |
Ref |
Expression |
1 |
|
hvsubval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
3 |
|
hvsubval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ 𝐶 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ 𝐶 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
5 |
2 4
|
eqeq12d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 −ℎ 𝐶 ) ↔ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) |
6 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
7 |
|
hvmulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
8 |
6 7
|
mpan |
⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
9 |
|
hvmulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) |
10 |
6 9
|
mpan |
⊢ ( 𝐶 ∈ ℋ → ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) |
11 |
|
hvaddcan |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ∧ ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ↔ ( - 1 ·ℎ 𝐵 ) = ( - 1 ·ℎ 𝐶 ) ) ) |
12 |
10 11
|
syl3an3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ↔ ( - 1 ·ℎ 𝐵 ) = ( - 1 ·ℎ 𝐶 ) ) ) |
13 |
8 12
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ↔ ( - 1 ·ℎ 𝐵 ) = ( - 1 ·ℎ 𝐶 ) ) ) |
14 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
15 |
6 14
|
pm3.2i |
⊢ ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) |
16 |
|
hvmulcan |
⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) = ( - 1 ·ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
17 |
15 16
|
mp3an1 |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) = ( - 1 ·ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
18 |
17
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) = ( - 1 ·ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
19 |
5 13 18
|
3bitrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 −ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |