Step |
Hyp |
Ref |
Expression |
1 |
|
hvsubcl |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐶 −ℎ 𝐴 ) ∈ ℋ ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 −ℎ 𝐴 ) ∈ ℋ ) |
3 |
|
hvsubcl |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 −ℎ 𝐵 ) ∈ ℋ ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 −ℎ 𝐵 ) ∈ ℋ ) |
5 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
6 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
7 |
5 6
|
pm3.2i |
⊢ ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) |
8 |
|
hvmulcan |
⊢ ( ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ∧ ( 𝐶 −ℎ 𝐴 ) ∈ ℋ ∧ ( 𝐶 −ℎ 𝐵 ) ∈ ℋ ) → ( ( - 1 ·ℎ ( 𝐶 −ℎ 𝐴 ) ) = ( - 1 ·ℎ ( 𝐶 −ℎ 𝐵 ) ) ↔ ( 𝐶 −ℎ 𝐴 ) = ( 𝐶 −ℎ 𝐵 ) ) ) |
9 |
7 8
|
mp3an1 |
⊢ ( ( ( 𝐶 −ℎ 𝐴 ) ∈ ℋ ∧ ( 𝐶 −ℎ 𝐵 ) ∈ ℋ ) → ( ( - 1 ·ℎ ( 𝐶 −ℎ 𝐴 ) ) = ( - 1 ·ℎ ( 𝐶 −ℎ 𝐵 ) ) ↔ ( 𝐶 −ℎ 𝐴 ) = ( 𝐶 −ℎ 𝐵 ) ) ) |
10 |
2 4 9
|
syl2anc |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( - 1 ·ℎ ( 𝐶 −ℎ 𝐴 ) ) = ( - 1 ·ℎ ( 𝐶 −ℎ 𝐵 ) ) ↔ ( 𝐶 −ℎ 𝐴 ) = ( 𝐶 −ℎ 𝐵 ) ) ) |
11 |
|
hvnegdi |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐶 −ℎ 𝐴 ) ) = ( 𝐴 −ℎ 𝐶 ) ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐶 −ℎ 𝐴 ) ) = ( 𝐴 −ℎ 𝐶 ) ) |
13 |
|
hvnegdi |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐶 −ℎ 𝐵 ) ) = ( 𝐵 −ℎ 𝐶 ) ) |
14 |
13
|
3adant2 |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐶 −ℎ 𝐵 ) ) = ( 𝐵 −ℎ 𝐶 ) ) |
15 |
12 14
|
eqeq12d |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( - 1 ·ℎ ( 𝐶 −ℎ 𝐴 ) ) = ( - 1 ·ℎ ( 𝐶 −ℎ 𝐵 ) ) ↔ ( 𝐴 −ℎ 𝐶 ) = ( 𝐵 −ℎ 𝐶 ) ) ) |
16 |
|
hvsubcan |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐶 −ℎ 𝐴 ) = ( 𝐶 −ℎ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
17 |
10 15 16
|
3bitr3d |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐶 ) = ( 𝐵 −ℎ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
18 |
17
|
3coml |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐶 ) = ( 𝐵 −ℎ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |