Metamath Proof Explorer


Theorem hvsubcan2i

Description: Vector cancellation law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvnegdi.1 𝐴 ∈ ℋ
hvnegdi.2 𝐵 ∈ ℋ
Assertion hvsubcan2i ( ( 𝐴 + 𝐵 ) + ( 𝐴 𝐵 ) ) = ( 2 · 𝐴 )

Proof

Step Hyp Ref Expression
1 hvnegdi.1 𝐴 ∈ ℋ
2 hvnegdi.2 𝐵 ∈ ℋ
3 1 2 hvsubvali ( 𝐴 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) )
4 3 oveq2i ( ( 𝐴 + 𝐵 ) + ( 𝐴 𝐵 ) ) = ( ( 𝐴 + 𝐵 ) + ( 𝐴 + ( - 1 · 𝐵 ) ) )
5 neg1cn - 1 ∈ ℂ
6 5 2 hvmulcli ( - 1 · 𝐵 ) ∈ ℋ
7 1 2 1 6 hvadd4i ( ( 𝐴 + 𝐵 ) + ( 𝐴 + ( - 1 · 𝐵 ) ) ) = ( ( 𝐴 + 𝐴 ) + ( 𝐵 + ( - 1 · 𝐵 ) ) )
8 hv2times ( 𝐴 ∈ ℋ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) )
9 1 8 ax-mp ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 )
10 9 eqcomi ( 𝐴 + 𝐴 ) = ( 2 · 𝐴 )
11 2 hvnegidi ( 𝐵 + ( - 1 · 𝐵 ) ) = 0
12 10 11 oveq12i ( ( 𝐴 + 𝐴 ) + ( 𝐵 + ( - 1 · 𝐵 ) ) ) = ( ( 2 · 𝐴 ) + 0 )
13 7 12 eqtri ( ( 𝐴 + 𝐵 ) + ( 𝐴 + ( - 1 · 𝐵 ) ) ) = ( ( 2 · 𝐴 ) + 0 )
14 2cn 2 ∈ ℂ
15 14 1 hvmulcli ( 2 · 𝐴 ) ∈ ℋ
16 ax-hvaddid ( ( 2 · 𝐴 ) ∈ ℋ → ( ( 2 · 𝐴 ) + 0 ) = ( 2 · 𝐴 ) )
17 15 16 ax-mp ( ( 2 · 𝐴 ) + 0 ) = ( 2 · 𝐴 )
18 13 17 eqtri ( ( 𝐴 + 𝐵 ) + ( 𝐴 + ( - 1 · 𝐵 ) ) ) = ( 2 · 𝐴 )
19 4 18 eqtri ( ( 𝐴 + 𝐵 ) + ( 𝐴 𝐵 ) ) = ( 2 · 𝐴 )