Step |
Hyp |
Ref |
Expression |
1 |
|
hvnegdi.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
hvnegdi.2 |
⊢ 𝐵 ∈ ℋ |
3 |
1 2
|
hvsubvali |
⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
4 |
3
|
oveq2i |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
5 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
6 |
5 2
|
hvmulcli |
⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
7 |
1 2 1 6
|
hvadd4i |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( 𝐴 +ℎ 𝐴 ) +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
8 |
|
hv2times |
⊢ ( 𝐴 ∈ ℋ → ( 2 ·ℎ 𝐴 ) = ( 𝐴 +ℎ 𝐴 ) ) |
9 |
1 8
|
ax-mp |
⊢ ( 2 ·ℎ 𝐴 ) = ( 𝐴 +ℎ 𝐴 ) |
10 |
9
|
eqcomi |
⊢ ( 𝐴 +ℎ 𝐴 ) = ( 2 ·ℎ 𝐴 ) |
11 |
2
|
hvnegidi |
⊢ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ |
12 |
10 11
|
oveq12i |
⊢ ( ( 𝐴 +ℎ 𝐴 ) +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( 2 ·ℎ 𝐴 ) +ℎ 0ℎ ) |
13 |
7 12
|
eqtri |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( 2 ·ℎ 𝐴 ) +ℎ 0ℎ ) |
14 |
|
2cn |
⊢ 2 ∈ ℂ |
15 |
14 1
|
hvmulcli |
⊢ ( 2 ·ℎ 𝐴 ) ∈ ℋ |
16 |
|
ax-hvaddid |
⊢ ( ( 2 ·ℎ 𝐴 ) ∈ ℋ → ( ( 2 ·ℎ 𝐴 ) +ℎ 0ℎ ) = ( 2 ·ℎ 𝐴 ) ) |
17 |
15 16
|
ax-mp |
⊢ ( ( 2 ·ℎ 𝐴 ) +ℎ 0ℎ ) = ( 2 ·ℎ 𝐴 ) |
18 |
13 17
|
eqtri |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 2 ·ℎ 𝐴 ) |
19 |
4 18
|
eqtri |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 2 ·ℎ 𝐴 ) |