Step |
Hyp |
Ref |
Expression |
1 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
2 |
|
hvmulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) |
3 |
1 2
|
mpan |
⊢ ( 𝐶 ∈ ℋ → ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) |
4 |
|
ax-hvdistr1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) |
5 |
3 4
|
syl3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) |
6 |
|
hvmulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( - 1 ·ℎ 𝐶 ) ) = ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) |
7 |
1 6
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( - 1 ·ℎ 𝐶 ) ) = ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) |
8 |
7
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ ( - 1 ·ℎ 𝐶 ) ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) ) |
9 |
8
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ ( - 1 ·ℎ 𝐶 ) ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) ) |
10 |
5 9
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) ) |
11 |
|
hvsubval |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 −ℎ 𝐶 ) = ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
12 |
11
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 −ℎ 𝐶 ) = ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = ( 𝐴 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) |
14 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) |
16 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) |
17 |
16
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) |
18 |
|
hvsubval |
⊢ ( ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ∧ ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) ) |
19 |
15 17 18
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) ) |
20 |
10 13 19
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) |