Step |
Hyp |
Ref |
Expression |
1 |
|
hvmulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) |
2 |
1
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) |
3 |
|
hvmulcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ℎ 𝐶 ) ∈ ℋ ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ℎ 𝐶 ) ∈ ℋ ) |
5 |
|
hvsubval |
⊢ ( ( ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ∧ ( 𝐵 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) ) |
6 |
2 4 5
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) ) |
7 |
|
mulm1 |
⊢ ( 𝐵 ∈ ℂ → ( - 1 · 𝐵 ) = - 𝐵 ) |
8 |
7
|
oveq1d |
⊢ ( 𝐵 ∈ ℂ → ( ( - 1 · 𝐵 ) ·ℎ 𝐶 ) = ( - 𝐵 ·ℎ 𝐶 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 · 𝐵 ) ·ℎ 𝐶 ) = ( - 𝐵 ·ℎ 𝐶 ) ) |
10 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
11 |
|
ax-hvmulass |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 · 𝐵 ) ·ℎ 𝐶 ) = ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) |
12 |
10 11
|
mp3an1 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 · 𝐵 ) ·ℎ 𝐶 ) = ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) |
13 |
9 12
|
eqtr3d |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( - 𝐵 ·ℎ 𝐶 ) = ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) |
14 |
13
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( - 𝐵 ·ℎ 𝐶 ) = ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) |
15 |
14
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 𝐵 ·ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) ) |
16 |
|
negcl |
⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) |
17 |
|
ax-hvdistr2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + - 𝐵 ) ·ℎ 𝐶 ) = ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 𝐵 ·ℎ 𝐶 ) ) ) |
18 |
16 17
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + - 𝐵 ) ·ℎ 𝐶 ) = ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 𝐵 ·ℎ 𝐶 ) ) ) |
19 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
20 |
19
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
21 |
20
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + - 𝐵 ) ·ℎ 𝐶 ) = ( ( 𝐴 − 𝐵 ) ·ℎ 𝐶 ) ) |
22 |
18 21
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 𝐵 ·ℎ 𝐶 ) ) = ( ( 𝐴 − 𝐵 ) ·ℎ 𝐶 ) ) |
23 |
6 15 22
|
3eqtr2rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 − 𝐵 ) ·ℎ 𝐶 ) = ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) |