Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) |
2 |
1
|
eqeq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = 0ℎ ) ) |
3 |
|
eqeq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 = 𝐵 ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = 𝐵 ) ) |
4 |
2 3
|
bibi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ ↔ 𝐴 = 𝐵 ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = 0ℎ ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = 𝐵 ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = 0ℎ ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0ℎ ) ) |
7 |
|
eqeq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = 𝐵 ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
8 |
6 7
|
bibi12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = 0ℎ ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = 𝐵 ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0ℎ ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
9 |
|
ifhvhv0 |
⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ |
10 |
|
ifhvhv0 |
⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ |
11 |
9 10
|
hvsubeq0i |
⊢ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0ℎ ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) |
12 |
4 8 11
|
dedth2h |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ ↔ 𝐴 = 𝐵 ) ) |