| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							hvnegdi.1 | 
							⊢ 𝐴  ∈   ℋ  | 
						
						
							| 2 | 
							
								
							 | 
							hvnegdi.2 | 
							⊢ 𝐵  ∈   ℋ  | 
						
						
							| 3 | 
							
								1 2
							 | 
							hvsubvali | 
							⊢ ( 𝐴  −ℎ  𝐵 )  =  ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							eqeq1i | 
							⊢ ( ( 𝐴  −ℎ  𝐵 )  =  0ℎ  ↔  ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) )  =  0ℎ )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq1 | 
							⊢ ( ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) )  =  0ℎ  →  ( ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) )  +ℎ  𝐵 )  =  ( 0ℎ  +ℎ  𝐵 ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							sylbi | 
							⊢ ( ( 𝐴  −ℎ  𝐵 )  =  0ℎ  →  ( ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) )  +ℎ  𝐵 )  =  ( 0ℎ  +ℎ  𝐵 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							neg1cn | 
							⊢ - 1  ∈  ℂ  | 
						
						
							| 8 | 
							
								7 2
							 | 
							hvmulcli | 
							⊢ ( - 1  ·ℎ  𝐵 )  ∈   ℋ  | 
						
						
							| 9 | 
							
								1 8 2
							 | 
							hvadd32i | 
							⊢ ( ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) )  +ℎ  𝐵 )  =  ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( - 1  ·ℎ  𝐵 ) )  | 
						
						
							| 10 | 
							
								1 2 8
							 | 
							hvassi | 
							⊢ ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( - 1  ·ℎ  𝐵 ) )  =  ( 𝐴  +ℎ  ( 𝐵  +ℎ  ( - 1  ·ℎ  𝐵 ) ) )  | 
						
						
							| 11 | 
							
								2
							 | 
							hvnegidi | 
							⊢ ( 𝐵  +ℎ  ( - 1  ·ℎ  𝐵 ) )  =  0ℎ  | 
						
						
							| 12 | 
							
								11
							 | 
							oveq2i | 
							⊢ ( 𝐴  +ℎ  ( 𝐵  +ℎ  ( - 1  ·ℎ  𝐵 ) ) )  =  ( 𝐴  +ℎ  0ℎ )  | 
						
						
							| 13 | 
							
								
							 | 
							ax-hvaddid | 
							⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  +ℎ  0ℎ )  =  𝐴 )  | 
						
						
							| 14 | 
							
								1 13
							 | 
							ax-mp | 
							⊢ ( 𝐴  +ℎ  0ℎ )  =  𝐴  | 
						
						
							| 15 | 
							
								12 14
							 | 
							eqtri | 
							⊢ ( 𝐴  +ℎ  ( 𝐵  +ℎ  ( - 1  ·ℎ  𝐵 ) ) )  =  𝐴  | 
						
						
							| 16 | 
							
								10 15
							 | 
							eqtri | 
							⊢ ( ( 𝐴  +ℎ  𝐵 )  +ℎ  ( - 1  ·ℎ  𝐵 ) )  =  𝐴  | 
						
						
							| 17 | 
							
								9 16
							 | 
							eqtri | 
							⊢ ( ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐵 ) )  +ℎ  𝐵 )  =  𝐴  | 
						
						
							| 18 | 
							
								2
							 | 
							hvaddlidi | 
							⊢ ( 0ℎ  +ℎ  𝐵 )  =  𝐵  | 
						
						
							| 19 | 
							
								6 17 18
							 | 
							3eqtr3g | 
							⊢ ( ( 𝐴  −ℎ  𝐵 )  =  0ℎ  →  𝐴  =  𝐵 )  | 
						
						
							| 20 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝐴  =  𝐵  →  ( 𝐴  −ℎ  𝐵 )  =  ( 𝐵  −ℎ  𝐵 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							hvsubid | 
							⊢ ( 𝐵  ∈   ℋ  →  ( 𝐵  −ℎ  𝐵 )  =  0ℎ )  | 
						
						
							| 22 | 
							
								2 21
							 | 
							ax-mp | 
							⊢ ( 𝐵  −ℎ  𝐵 )  =  0ℎ  | 
						
						
							| 23 | 
							
								20 22
							 | 
							eqtrdi | 
							⊢ ( 𝐴  =  𝐵  →  ( 𝐴  −ℎ  𝐵 )  =  0ℎ )  | 
						
						
							| 24 | 
							
								19 23
							 | 
							impbii | 
							⊢ ( ( 𝐴  −ℎ  𝐵 )  =  0ℎ  ↔  𝐴  =  𝐵 )  |