Metamath Proof Explorer


Theorem hvsubeq0i

Description: If the difference between two vectors is zero, they are equal. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvnegdi.1 𝐴 ∈ ℋ
hvnegdi.2 𝐵 ∈ ℋ
Assertion hvsubeq0i ( ( 𝐴 𝐵 ) = 0𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 hvnegdi.1 𝐴 ∈ ℋ
2 hvnegdi.2 𝐵 ∈ ℋ
3 1 2 hvsubvali ( 𝐴 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) )
4 3 eqeq1i ( ( 𝐴 𝐵 ) = 0 ↔ ( 𝐴 + ( - 1 · 𝐵 ) ) = 0 )
5 oveq1 ( ( 𝐴 + ( - 1 · 𝐵 ) ) = 0 → ( ( 𝐴 + ( - 1 · 𝐵 ) ) + 𝐵 ) = ( 0 + 𝐵 ) )
6 4 5 sylbi ( ( 𝐴 𝐵 ) = 0 → ( ( 𝐴 + ( - 1 · 𝐵 ) ) + 𝐵 ) = ( 0 + 𝐵 ) )
7 neg1cn - 1 ∈ ℂ
8 7 2 hvmulcli ( - 1 · 𝐵 ) ∈ ℋ
9 1 8 2 hvadd32i ( ( 𝐴 + ( - 1 · 𝐵 ) ) + 𝐵 ) = ( ( 𝐴 + 𝐵 ) + ( - 1 · 𝐵 ) )
10 1 2 8 hvassi ( ( 𝐴 + 𝐵 ) + ( - 1 · 𝐵 ) ) = ( 𝐴 + ( 𝐵 + ( - 1 · 𝐵 ) ) )
11 2 hvnegidi ( 𝐵 + ( - 1 · 𝐵 ) ) = 0
12 11 oveq2i ( 𝐴 + ( 𝐵 + ( - 1 · 𝐵 ) ) ) = ( 𝐴 + 0 )
13 ax-hvaddid ( 𝐴 ∈ ℋ → ( 𝐴 + 0 ) = 𝐴 )
14 1 13 ax-mp ( 𝐴 + 0 ) = 𝐴
15 12 14 eqtri ( 𝐴 + ( 𝐵 + ( - 1 · 𝐵 ) ) ) = 𝐴
16 10 15 eqtri ( ( 𝐴 + 𝐵 ) + ( - 1 · 𝐵 ) ) = 𝐴
17 9 16 eqtri ( ( 𝐴 + ( - 1 · 𝐵 ) ) + 𝐵 ) = 𝐴
18 2 hvaddid2i ( 0 + 𝐵 ) = 𝐵
19 6 17 18 3eqtr3g ( ( 𝐴 𝐵 ) = 0𝐴 = 𝐵 )
20 oveq1 ( 𝐴 = 𝐵 → ( 𝐴 𝐵 ) = ( 𝐵 𝐵 ) )
21 hvsubid ( 𝐵 ∈ ℋ → ( 𝐵 𝐵 ) = 0 )
22 2 21 ax-mp ( 𝐵 𝐵 ) = 0
23 20 22 eqtrdi ( 𝐴 = 𝐵 → ( 𝐴 𝐵 ) = 0 )
24 19 23 impbii ( ( 𝐴 𝐵 ) = 0𝐴 = 𝐵 )