Step |
Hyp |
Ref |
Expression |
1 |
|
hvnegdi.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
hvnegdi.2 |
⊢ 𝐵 ∈ ℋ |
3 |
1 2
|
hvsubvali |
⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
4 |
3
|
eqeq1i |
⊢ ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ ↔ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ ) |
5 |
|
oveq1 |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ 𝐵 ) = ( 0ℎ +ℎ 𝐵 ) ) |
6 |
4 5
|
sylbi |
⊢ ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ 𝐵 ) = ( 0ℎ +ℎ 𝐵 ) ) |
7 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
8 |
7 2
|
hvmulcli |
⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
9 |
1 8 2
|
hvadd32i |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ 𝐵 ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) |
10 |
1 2 8
|
hvassi |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
11 |
2
|
hvnegidi |
⊢ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ |
12 |
11
|
oveq2i |
⊢ ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐴 +ℎ 0ℎ ) |
13 |
|
ax-hvaddid |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 +ℎ 0ℎ ) = 𝐴 ) |
14 |
1 13
|
ax-mp |
⊢ ( 𝐴 +ℎ 0ℎ ) = 𝐴 |
15 |
12 14
|
eqtri |
⊢ ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = 𝐴 |
16 |
10 15
|
eqtri |
⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐴 |
17 |
9 16
|
eqtri |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ 𝐵 ) = 𝐴 |
18 |
2
|
hvaddid2i |
⊢ ( 0ℎ +ℎ 𝐵 ) = 𝐵 |
19 |
6 17 18
|
3eqtr3g |
⊢ ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ → 𝐴 = 𝐵 ) |
20 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 −ℎ 𝐵 ) = ( 𝐵 −ℎ 𝐵 ) ) |
21 |
|
hvsubid |
⊢ ( 𝐵 ∈ ℋ → ( 𝐵 −ℎ 𝐵 ) = 0ℎ ) |
22 |
2 21
|
ax-mp |
⊢ ( 𝐵 −ℎ 𝐵 ) = 0ℎ |
23 |
20 22
|
eqtrdi |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 −ℎ 𝐵 ) = 0ℎ ) |
24 |
19 23
|
impbii |
⊢ ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ ↔ 𝐴 = 𝐵 ) |