Metamath Proof Explorer


Theorem hvsubf

Description: Mapping domain and codomain of vector subtraction. (Contributed by NM, 6-Sep-2007) (New usage is discouraged.)

Ref Expression
Assertion hvsubf : ( ℋ × ℋ ) ⟶ ℋ

Proof

Step Hyp Ref Expression
1 neg1cn - 1 ∈ ℂ
2 hvmulcl ( ( - 1 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( - 1 · 𝑦 ) ∈ ℋ )
3 1 2 mpan ( 𝑦 ∈ ℋ → ( - 1 · 𝑦 ) ∈ ℋ )
4 hvaddcl ( ( 𝑥 ∈ ℋ ∧ ( - 1 · 𝑦 ) ∈ ℋ ) → ( 𝑥 + ( - 1 · 𝑦 ) ) ∈ ℋ )
5 3 4 sylan2 ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 + ( - 1 · 𝑦 ) ) ∈ ℋ )
6 5 rgen2 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 + ( - 1 · 𝑦 ) ) ∈ ℋ
7 df-hvsub = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 + ( - 1 · 𝑦 ) ) )
8 7 fmpo ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 + ( - 1 · 𝑦 ) ) ∈ ℋ ↔ − : ( ℋ × ℋ ) ⟶ ℋ )
9 6 8 mpbi : ( ℋ × ℋ ) ⟶ ℋ