Step |
Hyp |
Ref |
Expression |
1 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
2 |
|
hvmulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( - 1 ·ℎ 𝑦 ) ∈ ℋ ) |
3 |
1 2
|
mpan |
⊢ ( 𝑦 ∈ ℋ → ( - 1 ·ℎ 𝑦 ) ∈ ℋ ) |
4 |
|
hvaddcl |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( - 1 ·ℎ 𝑦 ) ∈ ℋ ) → ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ∈ ℋ ) |
5 |
3 4
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ∈ ℋ ) |
6 |
5
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ∈ ℋ |
7 |
|
df-hvsub |
⊢ −ℎ = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) |
8 |
7
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ∈ ℋ ↔ −ℎ : ( ℋ × ℋ ) ⟶ ℋ ) |
9 |
6 8
|
mpbi |
⊢ −ℎ : ( ℋ × ℋ ) ⟶ ℋ |