Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hvmulid |
⊢ ( 𝐴 ∈ ℋ → ( 1 ·ℎ 𝐴 ) = 𝐴 ) |
2 |
1
|
oveq1d |
⊢ ( 𝐴 ∈ ℋ → ( ( 1 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) ) |
3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
4 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
5 |
|
ax-hvdistr2 |
⊢ ( ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 1 + - 1 ) ·ℎ 𝐴 ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) ) |
6 |
3 4 5
|
mp3an12 |
⊢ ( 𝐴 ∈ ℋ → ( ( 1 + - 1 ) ·ℎ 𝐴 ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) ) |
7 |
|
hvsubval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 −ℎ 𝐴 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) ) |
8 |
7
|
anidms |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 𝐴 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) ) |
9 |
2 6 8
|
3eqtr4rd |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 𝐴 ) = ( ( 1 + - 1 ) ·ℎ 𝐴 ) ) |
10 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
11 |
10
|
oveq1i |
⊢ ( ( 1 + - 1 ) ·ℎ 𝐴 ) = ( 0 ·ℎ 𝐴 ) |
12 |
9 11
|
eqtrdi |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 𝐴 ) = ( 0 ·ℎ 𝐴 ) ) |
13 |
|
ax-hvmul0 |
⊢ ( 𝐴 ∈ ℋ → ( 0 ·ℎ 𝐴 ) = 0ℎ ) |
14 |
12 13
|
eqtrd |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 𝐴 ) = 0ℎ ) |