| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hvmulid | ⊢ ( 𝐴  ∈   ℋ  →  ( 1  ·ℎ  𝐴 )  =  𝐴 ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝐴  ∈   ℋ  →  ( ( 1  ·ℎ  𝐴 )  +ℎ  ( - 1  ·ℎ  𝐴 ) )  =  ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐴 ) ) ) | 
						
							| 3 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 4 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 5 |  | ax-hvdistr2 | ⊢ ( ( 1  ∈  ℂ  ∧  - 1  ∈  ℂ  ∧  𝐴  ∈   ℋ )  →  ( ( 1  +  - 1 )  ·ℎ  𝐴 )  =  ( ( 1  ·ℎ  𝐴 )  +ℎ  ( - 1  ·ℎ  𝐴 ) ) ) | 
						
							| 6 | 3 4 5 | mp3an12 | ⊢ ( 𝐴  ∈   ℋ  →  ( ( 1  +  - 1 )  ·ℎ  𝐴 )  =  ( ( 1  ·ℎ  𝐴 )  +ℎ  ( - 1  ·ℎ  𝐴 ) ) ) | 
						
							| 7 |  | hvsubval | ⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( 𝐴  −ℎ  𝐴 )  =  ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐴 ) ) ) | 
						
							| 8 | 7 | anidms | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  −ℎ  𝐴 )  =  ( 𝐴  +ℎ  ( - 1  ·ℎ  𝐴 ) ) ) | 
						
							| 9 | 2 6 8 | 3eqtr4rd | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  −ℎ  𝐴 )  =  ( ( 1  +  - 1 )  ·ℎ  𝐴 ) ) | 
						
							| 10 |  | 1pneg1e0 | ⊢ ( 1  +  - 1 )  =  0 | 
						
							| 11 | 10 | oveq1i | ⊢ ( ( 1  +  - 1 )  ·ℎ  𝐴 )  =  ( 0  ·ℎ  𝐴 ) | 
						
							| 12 | 9 11 | eqtrdi | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  −ℎ  𝐴 )  =  ( 0  ·ℎ  𝐴 ) ) | 
						
							| 13 |  | ax-hvmul0 | ⊢ ( 𝐴  ∈   ℋ  →  ( 0  ·ℎ  𝐴 )  =  0ℎ ) | 
						
							| 14 | 12 13 | eqtrd | ⊢ ( 𝐴  ∈   ℋ  →  ( 𝐴  −ℎ  𝐴 )  =  0ℎ ) |