Step |
Hyp |
Ref |
Expression |
1 |
|
hvass.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
hvass.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
hvass.3 |
⊢ 𝐶 ∈ ℋ |
4 |
|
hvadd4.4 |
⊢ 𝐷 ∈ ℋ |
5 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
6 |
5 2
|
hvmulcli |
⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
7 |
5 3
|
hvmulcli |
⊢ ( - 1 ·ℎ 𝐶 ) ∈ ℋ |
8 |
5 4
|
hvmulcli |
⊢ ( - 1 ·ℎ 𝐷 ) ∈ ℋ |
9 |
5 8
|
hvmulcli |
⊢ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ∈ ℋ |
10 |
1 6 7 9
|
hvadd4i |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( ( - 1 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
11 |
5 3 8
|
hvdistr1i |
⊢ ( - 1 ·ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( - 1 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
12 |
11
|
oveq2i |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( ( - 1 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
13 |
5 2 8
|
hvdistr1i |
⊢ ( - 1 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
14 |
13
|
oveq2i |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
15 |
10 12 14
|
3eqtr4i |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
16 |
1 6
|
hvaddcli |
⊢ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ ℋ |
17 |
3 8
|
hvaddcli |
⊢ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ∈ ℋ |
18 |
16 17
|
hvsubvali |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
19 |
1 7
|
hvaddcli |
⊢ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ∈ ℋ |
20 |
2 8
|
hvaddcli |
⊢ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ∈ ℋ |
21 |
19 20
|
hvsubvali |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) −ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
22 |
15 18 21
|
3eqtr4i |
⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) −ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
23 |
1 2
|
hvsubvali |
⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
24 |
3 4
|
hvsubvali |
⊢ ( 𝐶 −ℎ 𝐷 ) = ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) |
25 |
23 24
|
oveq12i |
⊢ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
26 |
1 3
|
hvsubvali |
⊢ ( 𝐴 −ℎ 𝐶 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) |
27 |
2 4
|
hvsubvali |
⊢ ( 𝐵 −ℎ 𝐷 ) = ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) |
28 |
26 27
|
oveq12i |
⊢ ( ( 𝐴 −ℎ 𝐶 ) −ℎ ( 𝐵 −ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) −ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
29 |
22 25 28
|
3eqtr4i |
⊢ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( 𝐴 −ℎ 𝐶 ) −ℎ ( 𝐵 −ℎ 𝐷 ) ) |