Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) | |
2 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( - 1 ·ℎ 𝑦 ) = ( - 1 ·ℎ 𝐵 ) ) | |
3 | 2 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 +ℎ ( - 1 ·ℎ 𝑦 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
4 | df-hvsub | ⊢ −ℎ = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) | |
5 | ovex | ⊢ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ V | |
6 | 1 3 4 5 | ovmpo | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |