Metamath Proof Explorer


Theorem hvsubval

Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion hvsubval ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 + ( - 1 · 𝑦 ) ) = ( 𝐴 + ( - 1 · 𝑦 ) ) )
2 oveq2 ( 𝑦 = 𝐵 → ( - 1 · 𝑦 ) = ( - 1 · 𝐵 ) )
3 2 oveq2d ( 𝑦 = 𝐵 → ( 𝐴 + ( - 1 · 𝑦 ) ) = ( 𝐴 + ( - 1 · 𝐵 ) ) )
4 df-hvsub = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 + ( - 1 · 𝑦 ) ) )
5 ovex ( 𝐴 + ( - 1 · 𝐵 ) ) ∈ V
6 1 3 4 5 ovmpo ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) )