Step |
Hyp |
Ref |
Expression |
1 |
|
hypcgr.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
hypcgr.m |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
hypcgr.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
hypcgr.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
hypcgr.h |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
hypcgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
7 |
|
hypcgr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
8 |
|
hypcgr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
9 |
|
hypcgr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
10 |
|
hypcgr.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
11 |
|
hypcgr.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
12 |
|
hypcgr.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
13 |
|
hypcgr.2 |
⊢ ( 𝜑 → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
14 |
|
hypcgr.3 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
15 |
|
hypcgr.4 |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
16 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
17 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
18 |
1 2 3 4 5 7 10
|
midcl |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ∈ 𝑃 ) |
19 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) = ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) |
20 |
1 2 3 16 17 4 18 19 9
|
mircl |
⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 ) ∈ 𝑃 ) |
21 |
1 2 3 16 17 4 18 19 10
|
mircl |
⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ∈ 𝑃 ) |
22 |
1 2 3 16 17 4 18 19 11
|
mircl |
⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ∈ 𝑃 ) |
23 |
1 2 3 16 17 4 9 10 11 13 19 18
|
mirrag |
⊢ ( 𝜑 → 〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 ) ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
24 |
1 2 3 16 17 4 18 19 9 10
|
miriso |
⊢ ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ) = ( 𝐷 − 𝐸 ) ) |
25 |
14 24
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ) ) |
26 |
1 2 3 16 17 4 18 19 10 11
|
miriso |
⊢ ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) = ( 𝐸 − 𝐹 ) ) |
27 |
15 26
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) ) |
28 |
1 2 3 4 5 10 7
|
midcom |
⊢ ( 𝜑 → ( 𝐸 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) |
29 |
1 2 3 4 5 10 7 17 18
|
ismidb |
⊢ ( 𝜑 → ( 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ↔ ( 𝐸 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ) |
30 |
28 29
|
mpbird |
⊢ ( 𝜑 → 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ) |
31 |
|
eqid |
⊢ ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐶 ( midG ‘ 𝐺 ) ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) = ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐶 ( midG ‘ 𝐺 ) ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
32 |
1 2 3 4 5 6 7 8 20 21 22 12 23 25 27 30 31
|
hypcgrlem2 |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) ) |
33 |
1 2 3 16 17 4 18 19 9 11
|
miriso |
⊢ ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) = ( 𝐷 − 𝐹 ) ) |
34 |
32 33
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |