| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hypcgr.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
hypcgr.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
hypcgr.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
hypcgr.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
hypcgr.h |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
| 6 |
|
hypcgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
hypcgr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
hypcgr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 9 |
|
hypcgr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 10 |
|
hypcgr.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 11 |
|
hypcgr.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 12 |
|
hypcgr.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 13 |
|
hypcgr.2 |
⊢ ( 𝜑 → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 14 |
|
hypcgr.3 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 15 |
|
hypcgr.4 |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 16 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
| 17 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
| 18 |
1 2 3 4 5 7 10
|
midcl |
⊢ ( 𝜑 → ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ∈ 𝑃 ) |
| 19 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) = ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) |
| 20 |
1 2 3 16 17 4 18 19 9
|
mircl |
⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 ) ∈ 𝑃 ) |
| 21 |
1 2 3 16 17 4 18 19 10
|
mircl |
⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ∈ 𝑃 ) |
| 22 |
1 2 3 16 17 4 18 19 11
|
mircl |
⊢ ( 𝜑 → ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ∈ 𝑃 ) |
| 23 |
1 2 3 16 17 4 9 10 11 13 19 18
|
mirrag |
⊢ ( 𝜑 → 〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 ) ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 24 |
1 2 3 16 17 4 18 19 9 10
|
miriso |
⊢ ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ) = ( 𝐷 − 𝐸 ) ) |
| 25 |
14 24
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ) ) |
| 26 |
1 2 3 16 17 4 18 19 10 11
|
miriso |
⊢ ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) = ( 𝐸 − 𝐹 ) ) |
| 27 |
15 26
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) ) |
| 28 |
1 2 3 4 5 10 7
|
midcom |
⊢ ( 𝜑 → ( 𝐸 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) |
| 29 |
1 2 3 4 5 10 7 17 18
|
ismidb |
⊢ ( 𝜑 → ( 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ↔ ( 𝐸 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ) |
| 30 |
28 29
|
mpbird |
⊢ ( 𝜑 → 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐸 ) ) |
| 31 |
|
eqid |
⊢ ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐶 ( midG ‘ 𝐺 ) ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) = ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐶 ( midG ‘ 𝐺 ) ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
| 32 |
1 2 3 4 5 6 7 8 20 21 22 12 23 25 27 30 31
|
hypcgrlem2 |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) ) |
| 33 |
1 2 3 16 17 4 18 19 9 11
|
miriso |
⊢ ( 𝜑 → ( ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐵 ( midG ‘ 𝐺 ) 𝐸 ) ) ‘ 𝐹 ) ) = ( 𝐷 − 𝐹 ) ) |
| 34 |
32 33
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |