| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hypcgr.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
hypcgr.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
hypcgr.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
hypcgr.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
hypcgr.h |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
| 6 |
|
hypcgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
hypcgr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
hypcgr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 9 |
|
hypcgr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 10 |
|
hypcgr.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 11 |
|
hypcgr.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 12 |
|
hypcgr.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 13 |
|
hypcgr.2 |
⊢ ( 𝜑 → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 14 |
|
hypcgr.3 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 15 |
|
hypcgr.4 |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 16 |
|
hypcgrlem2.b |
⊢ ( 𝜑 → 𝐵 = 𝐸 ) |
| 17 |
|
hypcgrlem1.s |
⊢ 𝑆 = ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
| 18 |
|
hypcgrlem1.a |
⊢ ( 𝜑 → 𝐶 = 𝐹 ) |
| 19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 20 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = 𝐵 ) → 𝐶 ∈ 𝑃 ) |
| 21 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
| 22 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = 𝐵 ) → 𝐹 ∈ 𝑃 ) |
| 23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = 𝐵 ) → 𝐷 ∈ 𝑃 ) |
| 24 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
| 25 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
| 26 |
1 2 3 24 25 4 6 7 8 12
|
ragcom |
⊢ ( 𝜑 → 〈“ 𝐶 𝐵 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 27 |
1 2 3 24 25 4 8 7 6
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝐶 𝐵 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐶 − 𝐴 ) = ( 𝐶 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐴 ) ) ) ) |
| 28 |
26 27
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐶 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐴 ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = 𝐵 ) → ( 𝐶 − 𝐴 ) = ( 𝐶 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐴 ) ) ) |
| 30 |
18
|
eqcomd |
⊢ ( 𝜑 → 𝐹 = 𝐶 ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = 𝐵 ) → 𝐹 = 𝐶 ) |
| 32 |
1 2 3 4 5 6 9 25 7
|
ismidb |
⊢ ( 𝜑 → ( 𝐷 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = 𝐵 ) ) |
| 33 |
32
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = 𝐵 ) → 𝐷 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐴 ) ) |
| 34 |
31 33
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = 𝐵 ) → ( 𝐹 − 𝐷 ) = ( 𝐶 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐴 ) ) ) |
| 35 |
29 34
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = 𝐵 ) → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |
| 36 |
1 2 3 19 20 21 22 23 35
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = 𝐵 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 37 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 = 𝐷 ) → 𝐴 = 𝐷 ) |
| 38 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 = 𝐷 ) → 𝐶 = 𝐹 ) |
| 39 |
37 38
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 = 𝐷 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 40 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 41 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐺 ∈ TarskiG ) |
| 42 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐴 ∈ 𝑃 ) |
| 43 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐵 ∈ 𝑃 ) |
| 44 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐶 ∈ 𝑃 ) |
| 45 |
1 2 3 24 25 41 42 43 44
|
israg |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
| 46 |
40 45
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 − 𝐶 ) = ( 𝐴 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
| 47 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐺 DimTarskiG≥ 2 ) |
| 48 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐷 ∈ 𝑃 ) |
| 49 |
1 2 3 41 47 42 48
|
midcl |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ∈ 𝑃 ) |
| 50 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) |
| 51 |
1 3 24 41 49 43 50
|
tgelrnln |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ∈ ran ( LineG ‘ 𝐺 ) ) |
| 52 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) |
| 53 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
| 54 |
1 2 3 24 25 41 43 52 44
|
mircl |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ∈ 𝑃 ) |
| 55 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐴 ≠ 𝐷 ) |
| 56 |
1 2 3 41 47 42 48
|
midbtwn |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 57 |
1 24 3 41 42 49 48 56
|
btwncolg3 |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐷 ∈ ( 𝐴 ( LineG ‘ 𝐺 ) ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ∨ 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ) |
| 58 |
|
eqidd |
⊢ ( 𝜑 → 𝐷 = 𝐷 ) |
| 59 |
58 16 18
|
s3eqd |
⊢ ( 𝜑 → 〈“ 𝐷 𝐵 𝐶 ”〉 = 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
| 60 |
59
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 〈“ 𝐷 𝐵 𝐶 ”〉 = 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
| 61 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 62 |
60 61
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 〈“ 𝐷 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 63 |
1 2 3 24 25 41 48 43 44
|
israg |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 〈“ 𝐷 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐷 − 𝐶 ) = ( 𝐷 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
| 64 |
62 63
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐷 − 𝐶 ) = ( 𝐷 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
| 65 |
1 24 3 41 42 48 49 53 44 54 2 55 57 46 64
|
lncgr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) − 𝐶 ) = ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
| 66 |
1 2 3 24 25 41 49 43 44
|
israg |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 〈“ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) − 𝐶 ) = ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) ) |
| 67 |
65 66
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 〈“ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 68 |
1 3 24 41 49 43 50
|
tglinerflx1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ∈ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
| 69 |
1 3 24 41 49 43 50
|
tglinerflx2 |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐵 ∈ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
| 70 |
1 2 3 41 47 17 24 51 49 52 67 68 69 44 50
|
lmimid |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝑆 ‘ 𝐶 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) |
| 71 |
70
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 − ( 𝑆 ‘ 𝐶 ) ) = ( 𝐴 − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) ) |
| 72 |
46 71
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 − 𝐶 ) = ( 𝐴 − ( 𝑆 ‘ 𝐶 ) ) ) |
| 73 |
1 2 3 41 47 48 42
|
midcom |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐷 ( midG ‘ 𝐺 ) 𝐴 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) |
| 74 |
73 68
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐷 ( midG ‘ 𝐺 ) 𝐴 ) ∈ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
| 75 |
55
|
necomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐷 ≠ 𝐴 ) |
| 76 |
1 3 24 41 48 42 75
|
tgelrnln |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 ) ∈ ran ( LineG ‘ 𝐺 ) ) |
| 77 |
1 2 3 41 42 49 48 56
|
tgbtwncom |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ∈ ( 𝐷 𝐼 𝐴 ) ) |
| 78 |
1 3 24 41 48 42 49 75 77
|
btwnlng1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ∈ ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 ) ) |
| 79 |
68 78
|
elind |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ∈ ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ∩ ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 ) ) ) |
| 80 |
1 3 24 41 48 42 75
|
tglinerflx2 |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐴 ∈ ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 ) ) |
| 81 |
50
|
necomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐵 ≠ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) |
| 82 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) → 𝐺 ∈ TarskiG ) |
| 83 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) → 𝐴 ∈ 𝑃 ) |
| 84 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) → 𝐷 ∈ 𝑃 ) |
| 85 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) → 𝐺 DimTarskiG≥ 2 ) |
| 86 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) → 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) |
| 87 |
86
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = 𝐴 ) |
| 88 |
1 2 3 82 85 83 84 87
|
midcgr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) → ( 𝐴 − 𝐴 ) = ( 𝐴 − 𝐷 ) ) |
| 89 |
88
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) → ( 𝐴 − 𝐷 ) = ( 𝐴 − 𝐴 ) ) |
| 90 |
1 2 3 82 83 84 83 89
|
axtgcgrid |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) → 𝐴 = 𝐷 ) |
| 91 |
90
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) → ( 𝐴 = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) → 𝐴 = 𝐷 ) ) |
| 92 |
91
|
necon3d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) → ( 𝐴 ≠ 𝐷 → 𝐴 ≠ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ) |
| 93 |
92
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐴 ≠ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) |
| 94 |
1 2 3 4 6 7 9 10 14
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
| 95 |
16
|
oveq1d |
⊢ ( 𝜑 → ( 𝐵 − 𝐷 ) = ( 𝐸 − 𝐷 ) ) |
| 96 |
94 95
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( 𝐵 − 𝐷 ) ) |
| 97 |
96
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐵 − 𝐴 ) = ( 𝐵 − 𝐷 ) ) |
| 98 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) |
| 99 |
1 2 3 41 47 42 48 25 49
|
ismidb |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐷 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ) |
| 100 |
98 99
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐷 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ‘ 𝐴 ) ) |
| 101 |
100
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐵 − 𝐷 ) = ( 𝐵 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ‘ 𝐴 ) ) ) |
| 102 |
97 101
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐵 − 𝐴 ) = ( 𝐵 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ‘ 𝐴 ) ) ) |
| 103 |
1 2 3 24 25 41 43 49 42
|
israg |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 〈“ 𝐵 ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐵 − 𝐴 ) = ( 𝐵 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ) ‘ 𝐴 ) ) ) ) |
| 104 |
102 103
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 〈“ 𝐵 ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) 𝐴 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 105 |
1 2 3 24 41 51 76 79 69 80 81 93 104
|
ragperp |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 ) ) |
| 106 |
105
|
orcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 ) ∨ 𝐷 = 𝐴 ) ) |
| 107 |
1 2 3 41 47 17 24 51 48 42
|
islmib |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 = ( 𝑆 ‘ 𝐷 ) ↔ ( ( 𝐷 ( midG ‘ 𝐺 ) 𝐴 ) ∈ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ∧ ( ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐷 ( LineG ‘ 𝐺 ) 𝐴 ) ∨ 𝐷 = 𝐴 ) ) ) ) |
| 108 |
74 106 107
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → 𝐴 = ( 𝑆 ‘ 𝐷 ) ) |
| 109 |
108
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 − ( 𝑆 ‘ 𝐶 ) ) = ( ( 𝑆 ‘ 𝐷 ) − ( 𝑆 ‘ 𝐶 ) ) ) |
| 110 |
1 2 3 41 47 17 24 51 48 44
|
lmiiso |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( ( 𝑆 ‘ 𝐷 ) − ( 𝑆 ‘ 𝐶 ) ) = ( 𝐷 − 𝐶 ) ) |
| 111 |
18
|
oveq2d |
⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 112 |
111
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐷 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 113 |
109 110 112
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 − ( 𝑆 ‘ 𝐶 ) ) = ( 𝐷 − 𝐹 ) ) |
| 114 |
72 113
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) ∧ 𝐴 ≠ 𝐷 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 115 |
39 114
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ≠ 𝐵 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 116 |
36 115
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |