| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hypcgr.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
hypcgr.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
hypcgr.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
hypcgr.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
hypcgr.h |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
| 6 |
|
hypcgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
hypcgr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
hypcgr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 9 |
|
hypcgr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 10 |
|
hypcgr.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 11 |
|
hypcgr.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 12 |
|
hypcgr.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 13 |
|
hypcgr.2 |
⊢ ( 𝜑 → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 14 |
|
hypcgr.3 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 15 |
|
hypcgr.4 |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 16 |
|
hypcgrlem2.b |
⊢ ( 𝜑 → 𝐵 = 𝐸 ) |
| 17 |
|
hypcgrlem2.s |
⊢ 𝑆 = ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
| 18 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐺 DimTarskiG≥ 2 ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
| 21 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 22 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐶 ∈ 𝑃 ) |
| 23 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
| 24 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
| 25 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) |
| 26 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐷 ∈ 𝑃 ) |
| 27 |
1 2 3 23 24 18 21 25 26
|
mircl |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ∈ 𝑃 ) |
| 28 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐸 ∈ 𝑃 ) |
| 29 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 30 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ) |
| 31 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐵 = 𝐸 ) |
| 32 |
1 2 3 23 24 18 21 25 28
|
mirinv |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) = 𝐸 ↔ 𝐵 = 𝐸 ) ) |
| 33 |
31 32
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) = 𝐸 ) |
| 34 |
33
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐸 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) ) |
| 35 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐹 ∈ 𝑃 ) |
| 36 |
1 2 3 18 19 22 35
|
midcom |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) ) |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) |
| 38 |
36 37
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) = 𝐵 ) |
| 39 |
1 2 3 18 19 35 22 24 21
|
ismidb |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ↔ ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) = 𝐵 ) ) |
| 40 |
38 39
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ) |
| 41 |
30 34 40
|
s3eqd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) 𝐸 𝐶 ”〉 = 〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ”〉 ) |
| 42 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 43 |
1 2 3 23 24 18 26 28 35 42 25 21
|
mirrag |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 44 |
41 43
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) 𝐸 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 45 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 46 |
1 2 3 23 24 18 21 25 26 28
|
miriso |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) ) = ( 𝐷 − 𝐸 ) ) |
| 47 |
33
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − 𝐸 ) ) |
| 48 |
45 46 47
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐴 − 𝐵 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − 𝐸 ) ) |
| 49 |
31
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐶 ) ) |
| 50 |
|
eqid |
⊢ ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) = ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
| 51 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐶 = 𝐶 ) |
| 52 |
1 2 3 18 19 20 21 22 27 28 22 29 44 48 49 31 50 51
|
hypcgrlem1 |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐴 − 𝐶 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − 𝐶 ) ) |
| 53 |
40
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − 𝐶 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ) ) |
| 54 |
1 2 3 23 24 18 21 25 26 35
|
miriso |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ) = ( 𝐷 − 𝐹 ) ) |
| 55 |
52 53 54
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 56 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐺 ∈ TarskiG ) |
| 57 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐺 DimTarskiG≥ 2 ) |
| 58 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐴 ∈ 𝑃 ) |
| 59 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐵 ∈ 𝑃 ) |
| 60 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐶 ∈ 𝑃 ) |
| 61 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐷 ∈ 𝑃 ) |
| 62 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐸 ∈ 𝑃 ) |
| 63 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐹 ∈ 𝑃 ) |
| 64 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 65 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 66 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 67 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 68 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐵 = 𝐸 ) |
| 69 |
|
eqid |
⊢ ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) = ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
| 70 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐶 = 𝐹 ) |
| 71 |
1 2 3 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
|
hypcgrlem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 72 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐺 ∈ TarskiG ) |
| 73 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐺 DimTarskiG≥ 2 ) |
| 74 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐴 ∈ 𝑃 ) |
| 75 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐵 ∈ 𝑃 ) |
| 76 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐶 ∈ 𝑃 ) |
| 77 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐹 ∈ 𝑃 ) |
| 78 |
1 2 3 72 73 76 77
|
midcl |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ∈ 𝑃 ) |
| 79 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) |
| 80 |
1 3 23 72 78 75 79
|
tgelrnln |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ∈ ran ( LineG ‘ 𝐺 ) ) |
| 81 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐷 ∈ 𝑃 ) |
| 82 |
1 2 3 72 73 17 23 80 81
|
lmicl |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝑆 ‘ 𝐷 ) ∈ 𝑃 ) |
| 83 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐸 ∈ 𝑃 ) |
| 84 |
1 2 3 72 73 17 23 80 83
|
lmicl |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝑆 ‘ 𝐸 ) ∈ 𝑃 ) |
| 85 |
1 2 3 72 73 17 23 80 77
|
lmicl |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝑆 ‘ 𝐹 ) ∈ 𝑃 ) |
| 86 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 87 |
1 2 3 72 73 17 23 80
|
lmimot |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝑆 ∈ ( 𝐺 Ismt 𝐺 ) ) |
| 88 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 89 |
1 2 3 23 24 72 81 83 77 87 88
|
motrag |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 〈“ ( 𝑆 ‘ 𝐷 ) ( 𝑆 ‘ 𝐸 ) ( 𝑆 ‘ 𝐹 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 90 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 91 |
1 2 3 72 73 17 23 80 81 83
|
lmiiso |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( ( 𝑆 ‘ 𝐷 ) − ( 𝑆 ‘ 𝐸 ) ) = ( 𝐷 − 𝐸 ) ) |
| 92 |
90 91
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐴 − 𝐵 ) = ( ( 𝑆 ‘ 𝐷 ) − ( 𝑆 ‘ 𝐸 ) ) ) |
| 93 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 94 |
1 2 3 72 73 17 23 80 83 77
|
lmiiso |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( ( 𝑆 ‘ 𝐸 ) − ( 𝑆 ‘ 𝐹 ) ) = ( 𝐸 − 𝐹 ) ) |
| 95 |
93 94
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐵 − 𝐶 ) = ( ( 𝑆 ‘ 𝐸 ) − ( 𝑆 ‘ 𝐹 ) ) ) |
| 96 |
1 3 23 72 78 75 79
|
tglinerflx2 |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐵 ∈ ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
| 97 |
1 2 3 72 73 17 23 80 75 96
|
lmicinv |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝑆 ‘ 𝐵 ) = 𝐵 ) |
| 98 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐵 = 𝐸 ) |
| 99 |
98
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐸 ) ) |
| 100 |
97 99
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐵 = ( 𝑆 ‘ 𝐸 ) ) |
| 101 |
|
eqid |
⊢ ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐷 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) = ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐷 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
| 102 |
1 2 3 72 73 76 77
|
midcom |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) ) |
| 103 |
1 3 23 72 78 75 79
|
tglinerflx1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ∈ ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
| 104 |
102 103
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) ∈ ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
| 105 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐶 ≠ 𝐹 ) |
| 106 |
105
|
necomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐹 ≠ 𝐶 ) |
| 107 |
1 3 23 72 77 76 106
|
tgelrnln |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ∈ ran ( LineG ‘ 𝐺 ) ) |
| 108 |
1 2 3 72 73 76 77
|
midbtwn |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ∈ ( 𝐶 𝐼 𝐹 ) ) |
| 109 |
1 2 3 72 76 78 77 108
|
tgbtwncom |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ∈ ( 𝐹 𝐼 𝐶 ) ) |
| 110 |
1 3 23 72 77 76 78 106 109
|
btwnlng1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ∈ ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ) |
| 111 |
103 110
|
elind |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ∈ ( ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ∩ ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ) ) |
| 112 |
1 3 23 72 77 76 106
|
tglinerflx2 |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐶 ∈ ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ) |
| 113 |
79
|
necomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐵 ≠ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) |
| 114 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → 𝐺 ∈ TarskiG ) |
| 115 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → 𝐶 ∈ 𝑃 ) |
| 116 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → 𝐹 ∈ 𝑃 ) |
| 117 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → 𝐺 DimTarskiG≥ 2 ) |
| 118 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) |
| 119 |
118
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐶 ) |
| 120 |
1 2 3 114 117 115 116 119
|
midcgr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → ( 𝐶 − 𝐶 ) = ( 𝐶 − 𝐹 ) ) |
| 121 |
120
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → ( 𝐶 − 𝐹 ) = ( 𝐶 − 𝐶 ) ) |
| 122 |
1 2 3 114 115 116 115 121
|
axtgcgrid |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → 𝐶 = 𝐹 ) |
| 123 |
122
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) → ( 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) → 𝐶 = 𝐹 ) ) |
| 124 |
123
|
necon3d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) → ( 𝐶 ≠ 𝐹 → 𝐶 ≠ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ) |
| 125 |
124
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐶 ≠ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) |
| 126 |
98
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐸 = 𝐵 ) |
| 127 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) |
| 128 |
1 2 3 72 73 76 77 24 78
|
ismidb |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐹 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ↔ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ) |
| 129 |
127 128
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐹 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ) |
| 130 |
126 129
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐸 − 𝐹 ) = ( 𝐵 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ) ) |
| 131 |
93 130
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐵 − 𝐶 ) = ( 𝐵 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ) ) |
| 132 |
1 2 3 23 24 72 75 78 76
|
israg |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 〈“ 𝐵 ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐵 − 𝐶 ) = ( 𝐵 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ) ) ) |
| 133 |
131 132
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 〈“ 𝐵 ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 134 |
1 2 3 23 72 80 107 111 96 112 113 125 133
|
ragperp |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ) |
| 135 |
134
|
orcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ∨ 𝐹 = 𝐶 ) ) |
| 136 |
1 2 3 72 73 17 23 80 77 76
|
islmib |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 = ( 𝑆 ‘ 𝐹 ) ↔ ( ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) ∈ ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ∧ ( ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ∨ 𝐹 = 𝐶 ) ) ) ) |
| 137 |
104 135 136
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐶 = ( 𝑆 ‘ 𝐹 ) ) |
| 138 |
1 2 3 72 73 74 75 76 82 84 85 86 89 92 95 100 101 137
|
hypcgrlem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐴 − 𝐶 ) = ( ( 𝑆 ‘ 𝐷 ) − ( 𝑆 ‘ 𝐹 ) ) ) |
| 139 |
1 2 3 72 73 17 23 80 81 77
|
lmiiso |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( ( 𝑆 ‘ 𝐷 ) − ( 𝑆 ‘ 𝐹 ) ) = ( 𝐷 − 𝐹 ) ) |
| 140 |
138 139
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 141 |
71 140
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 142 |
55 141
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |