Step |
Hyp |
Ref |
Expression |
1 |
|
hypcgr.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
hypcgr.m |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
hypcgr.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
hypcgr.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
hypcgr.h |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
hypcgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
7 |
|
hypcgr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
8 |
|
hypcgr.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
9 |
|
hypcgr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
10 |
|
hypcgr.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
11 |
|
hypcgr.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
12 |
|
hypcgr.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
13 |
|
hypcgr.2 |
⊢ ( 𝜑 → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
14 |
|
hypcgr.3 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
15 |
|
hypcgr.4 |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
16 |
|
hypcgrlem2.b |
⊢ ( 𝜑 → 𝐵 = 𝐸 ) |
17 |
|
hypcgrlem2.s |
⊢ 𝑆 = ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
18 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐺 ∈ TarskiG ) |
19 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐺 DimTarskiG≥ 2 ) |
20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
21 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐵 ∈ 𝑃 ) |
22 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐶 ∈ 𝑃 ) |
23 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
24 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
25 |
|
eqid |
⊢ ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) = ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) |
26 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐷 ∈ 𝑃 ) |
27 |
1 2 3 23 24 18 21 25 26
|
mircl |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ∈ 𝑃 ) |
28 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐸 ∈ 𝑃 ) |
29 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
30 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ) |
31 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐵 = 𝐸 ) |
32 |
1 2 3 23 24 18 21 25 28
|
mirinv |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) = 𝐸 ↔ 𝐵 = 𝐸 ) ) |
33 |
31 32
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) = 𝐸 ) |
34 |
33
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐸 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) ) |
35 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐹 ∈ 𝑃 ) |
36 |
1 2 3 18 19 22 35
|
midcom |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) |
38 |
36 37
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) = 𝐵 ) |
39 |
1 2 3 18 19 35 22 24 21
|
ismidb |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ↔ ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) = 𝐵 ) ) |
40 |
38 39
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐶 = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ) |
41 |
30 34 40
|
s3eqd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) 𝐸 𝐶 ”〉 = 〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ”〉 ) |
42 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
43 |
1 2 3 23 24 18 26 28 35 42 25 21
|
mirrag |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
44 |
41 43
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 〈“ ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) 𝐸 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
45 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
46 |
1 2 3 23 24 18 21 25 26 28
|
miriso |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) ) = ( 𝐷 − 𝐸 ) ) |
47 |
33
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐸 ) ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − 𝐸 ) ) |
48 |
45 46 47
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐴 − 𝐵 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − 𝐸 ) ) |
49 |
31
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐶 ) ) |
50 |
|
eqid |
⊢ ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) = ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
51 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → 𝐶 = 𝐶 ) |
52 |
1 2 3 18 19 20 21 22 27 28 22 29 44 48 49 31 50 51
|
hypcgrlem1 |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐴 − 𝐶 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − 𝐶 ) ) |
53 |
40
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − 𝐶 ) = ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ) ) |
54 |
1 2 3 23 24 18 21 25 26 35
|
miriso |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐷 ) − ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐹 ) ) = ( 𝐷 − 𝐹 ) ) |
55 |
52 53 54
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐵 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
56 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐺 ∈ TarskiG ) |
57 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐺 DimTarskiG≥ 2 ) |
58 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐴 ∈ 𝑃 ) |
59 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐵 ∈ 𝑃 ) |
60 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐶 ∈ 𝑃 ) |
61 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐷 ∈ 𝑃 ) |
62 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐸 ∈ 𝑃 ) |
63 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐹 ∈ 𝑃 ) |
64 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
65 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
66 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
67 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
68 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐵 = 𝐸 ) |
69 |
|
eqid |
⊢ ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) = ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) 𝐷 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
70 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → 𝐶 = 𝐹 ) |
71 |
1 2 3 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
|
hypcgrlem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = 𝐹 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
72 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐺 ∈ TarskiG ) |
73 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐺 DimTarskiG≥ 2 ) |
74 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐴 ∈ 𝑃 ) |
75 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐵 ∈ 𝑃 ) |
76 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐶 ∈ 𝑃 ) |
77 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐹 ∈ 𝑃 ) |
78 |
1 2 3 72 73 76 77
|
midcl |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ∈ 𝑃 ) |
79 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) |
80 |
1 3 23 72 78 75 79
|
tgelrnln |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ∈ ran ( LineG ‘ 𝐺 ) ) |
81 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐷 ∈ 𝑃 ) |
82 |
1 2 3 72 73 17 23 80 81
|
lmicl |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝑆 ‘ 𝐷 ) ∈ 𝑃 ) |
83 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐸 ∈ 𝑃 ) |
84 |
1 2 3 72 73 17 23 80 83
|
lmicl |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝑆 ‘ 𝐸 ) ∈ 𝑃 ) |
85 |
1 2 3 72 73 17 23 80 77
|
lmicl |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝑆 ‘ 𝐹 ) ∈ 𝑃 ) |
86 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
87 |
1 2 3 72 73 17 23 80
|
lmimot |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝑆 ∈ ( 𝐺 Ismt 𝐺 ) ) |
88 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
89 |
1 2 3 23 24 72 81 83 77 87 88
|
motrag |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 〈“ ( 𝑆 ‘ 𝐷 ) ( 𝑆 ‘ 𝐸 ) ( 𝑆 ‘ 𝐹 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
90 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
91 |
1 2 3 72 73 17 23 80 81 83
|
lmiiso |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( ( 𝑆 ‘ 𝐷 ) − ( 𝑆 ‘ 𝐸 ) ) = ( 𝐷 − 𝐸 ) ) |
92 |
90 91
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐴 − 𝐵 ) = ( ( 𝑆 ‘ 𝐷 ) − ( 𝑆 ‘ 𝐸 ) ) ) |
93 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
94 |
1 2 3 72 73 17 23 80 83 77
|
lmiiso |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( ( 𝑆 ‘ 𝐸 ) − ( 𝑆 ‘ 𝐹 ) ) = ( 𝐸 − 𝐹 ) ) |
95 |
93 94
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐵 − 𝐶 ) = ( ( 𝑆 ‘ 𝐸 ) − ( 𝑆 ‘ 𝐹 ) ) ) |
96 |
1 3 23 72 78 75 79
|
tglinerflx2 |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐵 ∈ ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
97 |
1 2 3 72 73 17 23 80 75 96
|
lmicinv |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝑆 ‘ 𝐵 ) = 𝐵 ) |
98 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐵 = 𝐸 ) |
99 |
98
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐸 ) ) |
100 |
97 99
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐵 = ( 𝑆 ‘ 𝐸 ) ) |
101 |
|
eqid |
⊢ ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐷 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) = ( ( lInvG ‘ 𝐺 ) ‘ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐷 ) ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
102 |
1 2 3 72 73 76 77
|
midcom |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) ) |
103 |
1 3 23 72 78 75 79
|
tglinerflx1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ∈ ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
104 |
102 103
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) ∈ ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ) |
105 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐶 ≠ 𝐹 ) |
106 |
105
|
necomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐹 ≠ 𝐶 ) |
107 |
1 3 23 72 77 76 106
|
tgelrnln |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ∈ ran ( LineG ‘ 𝐺 ) ) |
108 |
1 2 3 72 73 76 77
|
midbtwn |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ∈ ( 𝐶 𝐼 𝐹 ) ) |
109 |
1 2 3 72 76 78 77 108
|
tgbtwncom |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ∈ ( 𝐹 𝐼 𝐶 ) ) |
110 |
1 3 23 72 77 76 78 106 109
|
btwnlng1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ∈ ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ) |
111 |
103 110
|
elind |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ∈ ( ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ∩ ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ) ) |
112 |
1 3 23 72 77 76 106
|
tglinerflx2 |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐶 ∈ ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ) |
113 |
79
|
necomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐵 ≠ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) |
114 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → 𝐺 ∈ TarskiG ) |
115 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → 𝐶 ∈ 𝑃 ) |
116 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → 𝐹 ∈ 𝑃 ) |
117 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → 𝐺 DimTarskiG≥ 2 ) |
118 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) |
119 |
118
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = 𝐶 ) |
120 |
1 2 3 114 117 115 116 119
|
midcgr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → ( 𝐶 − 𝐶 ) = ( 𝐶 − 𝐹 ) ) |
121 |
120
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → ( 𝐶 − 𝐹 ) = ( 𝐶 − 𝐶 ) ) |
122 |
1 2 3 114 115 116 115 121
|
axtgcgrid |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) → 𝐶 = 𝐹 ) |
123 |
122
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) → ( 𝐶 = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) → 𝐶 = 𝐹 ) ) |
124 |
123
|
necon3d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) → ( 𝐶 ≠ 𝐹 → 𝐶 ≠ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ) |
125 |
124
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐶 ≠ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) |
126 |
98
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐸 = 𝐵 ) |
127 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) |
128 |
1 2 3 72 73 76 77 24 78
|
ismidb |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐹 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ↔ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) = ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ) |
129 |
127 128
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐹 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ) |
130 |
126 129
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐸 − 𝐹 ) = ( 𝐵 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ) ) |
131 |
93 130
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐵 − 𝐶 ) = ( 𝐵 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ) ) |
132 |
1 2 3 23 24 72 75 78 76
|
israg |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 〈“ 𝐵 ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐵 − 𝐶 ) = ( 𝐵 − ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ) ‘ 𝐶 ) ) ) ) |
133 |
131 132
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 〈“ 𝐵 ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
134 |
1 2 3 23 72 80 107 111 96 112 113 125 133
|
ragperp |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ) |
135 |
134
|
orcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ∨ 𝐹 = 𝐶 ) ) |
136 |
1 2 3 72 73 17 23 80 77 76
|
islmib |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐶 = ( 𝑆 ‘ 𝐹 ) ↔ ( ( 𝐹 ( midG ‘ 𝐺 ) 𝐶 ) ∈ ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ∧ ( ( ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ( LineG ‘ 𝐺 ) 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐹 ( LineG ‘ 𝐺 ) 𝐶 ) ∨ 𝐹 = 𝐶 ) ) ) ) |
137 |
104 135 136
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → 𝐶 = ( 𝑆 ‘ 𝐹 ) ) |
138 |
1 2 3 72 73 74 75 76 82 84 85 86 89 92 95 100 101 137
|
hypcgrlem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐴 − 𝐶 ) = ( ( 𝑆 ‘ 𝐷 ) − ( 𝑆 ‘ 𝐹 ) ) ) |
139 |
1 2 3 72 73 17 23 80 81 77
|
lmiiso |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( ( 𝑆 ‘ 𝐷 ) − ( 𝑆 ‘ 𝐹 ) ) = ( 𝐷 − 𝐹 ) ) |
140 |
138 139
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) ∧ 𝐶 ≠ 𝐹 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
141 |
71 140
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝐶 ( midG ‘ 𝐺 ) 𝐹 ) ≠ 𝐵 ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
142 |
55 141
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |