| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
⊢ 0 ∈ ℝ |
| 2 |
1
|
fconst6 |
⊢ ( ℝ × { 0 } ) : ℝ ⟶ ℝ |
| 3 |
2
|
a1i |
⊢ ( ⊤ → ( ℝ × { 0 } ) : ℝ ⟶ ℝ ) |
| 4 |
|
snfi |
⊢ { 0 } ∈ Fin |
| 5 |
|
rnxpss |
⊢ ran ( ℝ × { 0 } ) ⊆ { 0 } |
| 6 |
|
ssfi |
⊢ ( ( { 0 } ∈ Fin ∧ ran ( ℝ × { 0 } ) ⊆ { 0 } ) → ran ( ℝ × { 0 } ) ∈ Fin ) |
| 7 |
4 5 6
|
mp2an |
⊢ ran ( ℝ × { 0 } ) ∈ Fin |
| 8 |
7
|
a1i |
⊢ ( ⊤ → ran ( ℝ × { 0 } ) ∈ Fin ) |
| 9 |
|
difss |
⊢ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ⊆ ran ( ℝ × { 0 } ) |
| 10 |
9 5
|
sstri |
⊢ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ⊆ { 0 } |
| 11 |
10
|
sseli |
⊢ ( 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) → 𝑥 ∈ { 0 } ) |
| 12 |
11
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → 𝑥 ∈ { 0 } ) |
| 13 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) → ¬ 𝑥 ∈ { 0 } ) |
| 14 |
13
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → ¬ 𝑥 ∈ { 0 } ) |
| 15 |
12 14
|
pm2.21dd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ∈ dom vol ) |
| 16 |
12 14
|
pm2.21dd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ) ∈ ℝ ) |
| 17 |
3 8 15 16
|
i1fd |
⊢ ( ⊤ → ( ℝ × { 0 } ) ∈ dom ∫1 ) |
| 18 |
17
|
mptru |
⊢ ( ℝ × { 0 } ) ∈ dom ∫1 |