Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
1
|
fconst6 |
⊢ ( ℝ × { 0 } ) : ℝ ⟶ ℝ |
3 |
2
|
a1i |
⊢ ( ⊤ → ( ℝ × { 0 } ) : ℝ ⟶ ℝ ) |
4 |
|
snfi |
⊢ { 0 } ∈ Fin |
5 |
|
rnxpss |
⊢ ran ( ℝ × { 0 } ) ⊆ { 0 } |
6 |
|
ssfi |
⊢ ( ( { 0 } ∈ Fin ∧ ran ( ℝ × { 0 } ) ⊆ { 0 } ) → ran ( ℝ × { 0 } ) ∈ Fin ) |
7 |
4 5 6
|
mp2an |
⊢ ran ( ℝ × { 0 } ) ∈ Fin |
8 |
7
|
a1i |
⊢ ( ⊤ → ran ( ℝ × { 0 } ) ∈ Fin ) |
9 |
|
difss |
⊢ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ⊆ ran ( ℝ × { 0 } ) |
10 |
9 5
|
sstri |
⊢ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ⊆ { 0 } |
11 |
10
|
sseli |
⊢ ( 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) → 𝑥 ∈ { 0 } ) |
12 |
11
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → 𝑥 ∈ { 0 } ) |
13 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) → ¬ 𝑥 ∈ { 0 } ) |
14 |
13
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → ¬ 𝑥 ∈ { 0 } ) |
15 |
12 14
|
pm2.21dd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ∈ dom vol ) |
16 |
12 14
|
pm2.21dd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ) ∈ ℝ ) |
17 |
3 8 15 16
|
i1fd |
⊢ ( ⊤ → ( ℝ × { 0 } ) ∈ dom ∫1 ) |
18 |
17
|
mptru |
⊢ ( ℝ × { 0 } ) ∈ dom ∫1 |