Metamath Proof Explorer


Theorem i1f1lem

Description: Lemma for i1f1 and itg11 . (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Hypothesis i1f1.1 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥𝐴 , 1 , 0 ) )
Assertion i1f1lem ( 𝐹 : ℝ ⟶ { 0 , 1 } ∧ ( 𝐴 ∈ dom vol → ( 𝐹 “ { 1 } ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 i1f1.1 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥𝐴 , 1 , 0 ) )
2 1ex 1 ∈ V
3 2 prid2 1 ∈ { 0 , 1 }
4 c0ex 0 ∈ V
5 4 prid1 0 ∈ { 0 , 1 }
6 3 5 ifcli if ( 𝑥𝐴 , 1 , 0 ) ∈ { 0 , 1 }
7 6 rgenw 𝑥 ∈ ℝ if ( 𝑥𝐴 , 1 , 0 ) ∈ { 0 , 1 }
8 1 fmpt ( ∀ 𝑥 ∈ ℝ if ( 𝑥𝐴 , 1 , 0 ) ∈ { 0 , 1 } ↔ 𝐹 : ℝ ⟶ { 0 , 1 } )
9 7 8 mpbi 𝐹 : ℝ ⟶ { 0 , 1 }
10 6 a1i ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ ℝ ) → if ( 𝑥𝐴 , 1 , 0 ) ∈ { 0 , 1 } )
11 10 1 fmptd ( 𝐴 ∈ dom vol → 𝐹 : ℝ ⟶ { 0 , 1 } )
12 ffn ( 𝐹 : ℝ ⟶ { 0 , 1 } → 𝐹 Fn ℝ )
13 elpreima ( 𝐹 Fn ℝ → ( 𝑦 ∈ ( 𝐹 “ { 1 } ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹𝑦 ) ∈ { 1 } ) ) )
14 11 12 13 3syl ( 𝐴 ∈ dom vol → ( 𝑦 ∈ ( 𝐹 “ { 1 } ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹𝑦 ) ∈ { 1 } ) ) )
15 fvex ( 𝐹𝑦 ) ∈ V
16 15 elsn ( ( 𝐹𝑦 ) ∈ { 1 } ↔ ( 𝐹𝑦 ) = 1 )
17 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
18 17 ifbid ( 𝑥 = 𝑦 → if ( 𝑥𝐴 , 1 , 0 ) = if ( 𝑦𝐴 , 1 , 0 ) )
19 2 4 ifex if ( 𝑦𝐴 , 1 , 0 ) ∈ V
20 18 1 19 fvmpt ( 𝑦 ∈ ℝ → ( 𝐹𝑦 ) = if ( 𝑦𝐴 , 1 , 0 ) )
21 20 eqeq1d ( 𝑦 ∈ ℝ → ( ( 𝐹𝑦 ) = 1 ↔ if ( 𝑦𝐴 , 1 , 0 ) = 1 ) )
22 0ne1 0 ≠ 1
23 iffalse ( ¬ 𝑦𝐴 → if ( 𝑦𝐴 , 1 , 0 ) = 0 )
24 23 eqeq1d ( ¬ 𝑦𝐴 → ( if ( 𝑦𝐴 , 1 , 0 ) = 1 ↔ 0 = 1 ) )
25 24 necon3bbid ( ¬ 𝑦𝐴 → ( ¬ if ( 𝑦𝐴 , 1 , 0 ) = 1 ↔ 0 ≠ 1 ) )
26 22 25 mpbiri ( ¬ 𝑦𝐴 → ¬ if ( 𝑦𝐴 , 1 , 0 ) = 1 )
27 26 con4i ( if ( 𝑦𝐴 , 1 , 0 ) = 1 → 𝑦𝐴 )
28 iftrue ( 𝑦𝐴 → if ( 𝑦𝐴 , 1 , 0 ) = 1 )
29 27 28 impbii ( if ( 𝑦𝐴 , 1 , 0 ) = 1 ↔ 𝑦𝐴 )
30 21 29 bitrdi ( 𝑦 ∈ ℝ → ( ( 𝐹𝑦 ) = 1 ↔ 𝑦𝐴 ) )
31 16 30 syl5bb ( 𝑦 ∈ ℝ → ( ( 𝐹𝑦 ) ∈ { 1 } ↔ 𝑦𝐴 ) )
32 31 pm5.32i ( ( 𝑦 ∈ ℝ ∧ ( 𝐹𝑦 ) ∈ { 1 } ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦𝐴 ) )
33 14 32 bitrdi ( 𝐴 ∈ dom vol → ( 𝑦 ∈ ( 𝐹 “ { 1 } ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦𝐴 ) ) )
34 mblss ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ )
35 34 sseld ( 𝐴 ∈ dom vol → ( 𝑦𝐴𝑦 ∈ ℝ ) )
36 35 pm4.71rd ( 𝐴 ∈ dom vol → ( 𝑦𝐴 ↔ ( 𝑦 ∈ ℝ ∧ 𝑦𝐴 ) ) )
37 33 36 bitr4d ( 𝐴 ∈ dom vol → ( 𝑦 ∈ ( 𝐹 “ { 1 } ) ↔ 𝑦𝐴 ) )
38 37 eqrdv ( 𝐴 ∈ dom vol → ( 𝐹 “ { 1 } ) = 𝐴 )
39 9 38 pm3.2i ( 𝐹 : ℝ ⟶ { 0 , 1 } ∧ ( 𝐴 ∈ dom vol → ( 𝐹 “ { 1 } ) = 𝐴 ) )