Step |
Hyp |
Ref |
Expression |
1 |
|
i1f1.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) |
2 |
|
1ex |
⊢ 1 ∈ V |
3 |
2
|
prid2 |
⊢ 1 ∈ { 0 , 1 } |
4 |
|
c0ex |
⊢ 0 ∈ V |
5 |
4
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
6 |
3 5
|
ifcli |
⊢ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ∈ { 0 , 1 } |
7 |
6
|
rgenw |
⊢ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ∈ { 0 , 1 } |
8 |
1
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ∈ { 0 , 1 } ↔ 𝐹 : ℝ ⟶ { 0 , 1 } ) |
9 |
7 8
|
mpbi |
⊢ 𝐹 : ℝ ⟶ { 0 , 1 } |
10 |
6
|
a1i |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ∈ { 0 , 1 } ) |
11 |
10 1
|
fmptd |
⊢ ( 𝐴 ∈ dom vol → 𝐹 : ℝ ⟶ { 0 , 1 } ) |
12 |
|
ffn |
⊢ ( 𝐹 : ℝ ⟶ { 0 , 1 } → 𝐹 Fn ℝ ) |
13 |
|
elpreima |
⊢ ( 𝐹 Fn ℝ → ( 𝑦 ∈ ( ◡ 𝐹 “ { 1 } ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ { 1 } ) ) ) |
14 |
11 12 13
|
3syl |
⊢ ( 𝐴 ∈ dom vol → ( 𝑦 ∈ ( ◡ 𝐹 “ { 1 } ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ { 1 } ) ) ) |
15 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
16 |
15
|
elsn |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ { 1 } ↔ ( 𝐹 ‘ 𝑦 ) = 1 ) |
17 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
18 |
17
|
ifbid |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ 𝐴 , 1 , 0 ) = if ( 𝑦 ∈ 𝐴 , 1 , 0 ) ) |
19 |
2 4
|
ifex |
⊢ if ( 𝑦 ∈ 𝐴 , 1 , 0 ) ∈ V |
20 |
18 1 19
|
fvmpt |
⊢ ( 𝑦 ∈ ℝ → ( 𝐹 ‘ 𝑦 ) = if ( 𝑦 ∈ 𝐴 , 1 , 0 ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑦 ∈ ℝ → ( ( 𝐹 ‘ 𝑦 ) = 1 ↔ if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ) ) |
22 |
|
0ne1 |
⊢ 0 ≠ 1 |
23 |
|
iffalse |
⊢ ( ¬ 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 0 ) |
24 |
23
|
eqeq1d |
⊢ ( ¬ 𝑦 ∈ 𝐴 → ( if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ↔ 0 = 1 ) ) |
25 |
24
|
necon3bbid |
⊢ ( ¬ 𝑦 ∈ 𝐴 → ( ¬ if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ↔ 0 ≠ 1 ) ) |
26 |
22 25
|
mpbiri |
⊢ ( ¬ 𝑦 ∈ 𝐴 → ¬ if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ) |
27 |
26
|
con4i |
⊢ ( if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 → 𝑦 ∈ 𝐴 ) |
28 |
|
iftrue |
⊢ ( 𝑦 ∈ 𝐴 → if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ) |
29 |
27 28
|
impbii |
⊢ ( if ( 𝑦 ∈ 𝐴 , 1 , 0 ) = 1 ↔ 𝑦 ∈ 𝐴 ) |
30 |
21 29
|
bitrdi |
⊢ ( 𝑦 ∈ ℝ → ( ( 𝐹 ‘ 𝑦 ) = 1 ↔ 𝑦 ∈ 𝐴 ) ) |
31 |
16 30
|
syl5bb |
⊢ ( 𝑦 ∈ ℝ → ( ( 𝐹 ‘ 𝑦 ) ∈ { 1 } ↔ 𝑦 ∈ 𝐴 ) ) |
32 |
31
|
pm5.32i |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑦 ) ∈ { 1 } ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) |
33 |
14 32
|
bitrdi |
⊢ ( 𝐴 ∈ dom vol → ( 𝑦 ∈ ( ◡ 𝐹 “ { 1 } ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) ) |
34 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
35 |
34
|
sseld |
⊢ ( 𝐴 ∈ dom vol → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ ) ) |
36 |
35
|
pm4.71rd |
⊢ ( 𝐴 ∈ dom vol → ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ ℝ ∧ 𝑦 ∈ 𝐴 ) ) ) |
37 |
33 36
|
bitr4d |
⊢ ( 𝐴 ∈ dom vol → ( 𝑦 ∈ ( ◡ 𝐹 “ { 1 } ) ↔ 𝑦 ∈ 𝐴 ) ) |
38 |
37
|
eqrdv |
⊢ ( 𝐴 ∈ dom vol → ( ◡ 𝐹 “ { 1 } ) = 𝐴 ) |
39 |
9 38
|
pm3.2i |
⊢ ( 𝐹 : ℝ ⟶ { 0 , 1 } ∧ ( 𝐴 ∈ dom vol → ( ◡ 𝐹 “ { 1 } ) = 𝐴 ) ) |