| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1fadd.1 | ⊢ ( 𝜑  →  𝐹  ∈  dom  ∫1 ) | 
						
							| 2 |  | i1fadd.2 | ⊢ ( 𝜑  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 3 |  | readdcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  +  𝑦 )  ∈  ℝ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ ) )  →  ( 𝑥  +  𝑦 )  ∈  ℝ ) | 
						
							| 5 |  | i1ff | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 7 |  | i1ff | ⊢ ( 𝐺  ∈  dom  ∫1  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 9 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 11 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 12 | 4 6 8 10 10 11 | off | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 ) : ℝ ⟶ ℝ ) | 
						
							| 13 |  | i1frn | ⊢ ( 𝐹  ∈  dom  ∫1  →  ran  𝐹  ∈  Fin ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝜑  →  ran  𝐹  ∈  Fin ) | 
						
							| 15 |  | i1frn | ⊢ ( 𝐺  ∈  dom  ∫1  →  ran  𝐺  ∈  Fin ) | 
						
							| 16 | 2 15 | syl | ⊢ ( 𝜑  →  ran  𝐺  ∈  Fin ) | 
						
							| 17 |  | xpfi | ⊢ ( ( ran  𝐹  ∈  Fin  ∧  ran  𝐺  ∈  Fin )  →  ( ran  𝐹  ×  ran  𝐺 )  ∈  Fin ) | 
						
							| 18 | 14 16 17 | syl2anc | ⊢ ( 𝜑  →  ( ran  𝐹  ×  ran  𝐺 )  ∈  Fin ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) )  =  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) ) | 
						
							| 20 |  | ovex | ⊢ ( 𝑢  +  𝑣 )  ∈  V | 
						
							| 21 | 19 20 | fnmpoi | ⊢ ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) )  Fn  ( ran  𝐹  ×  ran  𝐺 ) | 
						
							| 22 |  | dffn4 | ⊢ ( ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) )  Fn  ( ran  𝐹  ×  ran  𝐺 )  ↔  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) ) : ( ran  𝐹  ×  ran  𝐺 ) –onto→ ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) ) ) | 
						
							| 23 | 21 22 | mpbi | ⊢ ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) ) : ( ran  𝐹  ×  ran  𝐺 ) –onto→ ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) ) | 
						
							| 24 |  | fofi | ⊢ ( ( ( ran  𝐹  ×  ran  𝐺 )  ∈  Fin  ∧  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) ) : ( ran  𝐹  ×  ran  𝐺 ) –onto→ ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) ) )  →  ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) )  ∈  Fin ) | 
						
							| 25 | 18 23 24 | sylancl | ⊢ ( 𝜑  →  ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) )  ∈  Fin ) | 
						
							| 26 |  | eqid | ⊢ ( 𝑥  +  𝑦 )  =  ( 𝑥  +  𝑦 ) | 
						
							| 27 |  | rspceov | ⊢ ( ( 𝑥  ∈  ran  𝐹  ∧  𝑦  ∈  ran  𝐺  ∧  ( 𝑥  +  𝑦 )  =  ( 𝑥  +  𝑦 ) )  →  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 ( 𝑥  +  𝑦 )  =  ( 𝑢  +  𝑣 ) ) | 
						
							| 28 | 26 27 | mp3an3 | ⊢ ( ( 𝑥  ∈  ran  𝐹  ∧  𝑦  ∈  ran  𝐺 )  →  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 ( 𝑥  +  𝑦 )  =  ( 𝑢  +  𝑣 ) ) | 
						
							| 29 |  | ovex | ⊢ ( 𝑥  +  𝑦 )  ∈  V | 
						
							| 30 |  | eqeq1 | ⊢ ( 𝑤  =  ( 𝑥  +  𝑦 )  →  ( 𝑤  =  ( 𝑢  +  𝑣 )  ↔  ( 𝑥  +  𝑦 )  =  ( 𝑢  +  𝑣 ) ) ) | 
						
							| 31 | 30 | 2rexbidv | ⊢ ( 𝑤  =  ( 𝑥  +  𝑦 )  →  ( ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  +  𝑣 )  ↔  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 ( 𝑥  +  𝑦 )  =  ( 𝑢  +  𝑣 ) ) ) | 
						
							| 32 | 29 31 | elab | ⊢ ( ( 𝑥  +  𝑦 )  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  +  𝑣 ) }  ↔  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 ( 𝑥  +  𝑦 )  =  ( 𝑢  +  𝑣 ) ) | 
						
							| 33 | 28 32 | sylibr | ⊢ ( ( 𝑥  ∈  ran  𝐹  ∧  𝑦  ∈  ran  𝐺 )  →  ( 𝑥  +  𝑦 )  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  +  𝑣 ) } ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐹  ∧  𝑦  ∈  ran  𝐺 ) )  →  ( 𝑥  +  𝑦 )  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  +  𝑣 ) } ) | 
						
							| 35 | 6 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ℝ ) | 
						
							| 36 |  | dffn3 | ⊢ ( 𝐹  Fn  ℝ  ↔  𝐹 : ℝ ⟶ ran  𝐹 ) | 
						
							| 37 | 35 36 | sylib | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ran  𝐹 ) | 
						
							| 38 | 8 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  ℝ ) | 
						
							| 39 |  | dffn3 | ⊢ ( 𝐺  Fn  ℝ  ↔  𝐺 : ℝ ⟶ ran  𝐺 ) | 
						
							| 40 | 38 39 | sylib | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ran  𝐺 ) | 
						
							| 41 | 34 37 40 10 10 11 | off | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 ) : ℝ ⟶ { 𝑤  ∣  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  +  𝑣 ) } ) | 
						
							| 42 | 41 | frnd | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘f   +  𝐺 )  ⊆  { 𝑤  ∣  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  +  𝑣 ) } ) | 
						
							| 43 | 19 | rnmpo | ⊢ ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) )  =  { 𝑤  ∣  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  +  𝑣 ) } | 
						
							| 44 | 42 43 | sseqtrrdi | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘f   +  𝐺 )  ⊆  ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  +  𝑣 ) ) ) | 
						
							| 45 | 25 44 | ssfid | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘f   +  𝐺 )  ∈  Fin ) | 
						
							| 46 | 12 | frnd | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘f   +  𝐺 )  ⊆  ℝ ) | 
						
							| 47 | 46 | ssdifssd | ⊢ ( 𝜑  →  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } )  ⊆  ℝ ) | 
						
							| 48 | 47 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  𝑦  ∈  ℝ ) | 
						
							| 49 | 48 | recnd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  𝑦  ∈  ℂ ) | 
						
							| 50 | 1 2 | i1faddlem | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℂ )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } )  =  ∪  𝑧  ∈  ran  𝐺 ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) | 
						
							| 51 | 49 50 | syldan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } )  =  ∪  𝑧  ∈  ran  𝐺 ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) | 
						
							| 52 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ran  𝐺  ∈  Fin ) | 
						
							| 53 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  𝐹  ∈  dom  ∫1 ) | 
						
							| 54 |  | i1fmbf | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐹  ∈  MblFn ) | 
						
							| 55 | 53 54 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  𝐹  ∈  MblFn ) | 
						
							| 56 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 57 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  ( 𝐹  ∘f   +  𝐺 ) : ℝ ⟶ ℝ ) | 
						
							| 58 | 57 | frnd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  ran  ( 𝐹  ∘f   +  𝐺 )  ⊆  ℝ ) | 
						
							| 59 |  | eldifi | ⊢ ( 𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } )  →  𝑦  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) ) | 
						
							| 60 | 59 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  𝑦  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) ) | 
						
							| 61 | 58 60 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  𝑦  ∈  ℝ ) | 
						
							| 62 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 63 | 62 | frnd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ran  𝐺  ⊆  ℝ ) | 
						
							| 64 | 63 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  𝑧  ∈  ℝ ) | 
						
							| 65 | 61 64 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  ( 𝑦  −  𝑧 )  ∈  ℝ ) | 
						
							| 66 |  | mbfimasn | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : ℝ ⟶ ℝ  ∧  ( 𝑦  −  𝑧 )  ∈  ℝ )  →  ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∈  dom  vol ) | 
						
							| 67 | 55 56 65 66 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∈  dom  vol ) | 
						
							| 68 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 69 |  | i1fmbf | ⊢ ( 𝐺  ∈  dom  ∫1  →  𝐺  ∈  MblFn ) | 
						
							| 70 | 68 69 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  𝐺  ∈  MblFn ) | 
						
							| 71 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 72 |  | mbfimasn | ⊢ ( ( 𝐺  ∈  MblFn  ∧  𝐺 : ℝ ⟶ ℝ  ∧  𝑧  ∈  ℝ )  →  ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol ) | 
						
							| 73 | 70 71 64 72 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol ) | 
						
							| 74 |  | inmbl | ⊢ ( ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∈  dom  vol  ∧  ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol )  →  ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol ) | 
						
							| 75 | 67 73 74 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol ) | 
						
							| 76 | 75 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ∀ 𝑧  ∈  ran  𝐺 ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol ) | 
						
							| 77 |  | finiunmbl | ⊢ ( ( ran  𝐺  ∈  Fin  ∧  ∀ 𝑧  ∈  ran  𝐺 ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol )  →  ∪  𝑧  ∈  ran  𝐺 ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol ) | 
						
							| 78 | 52 76 77 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ∪  𝑧  ∈  ran  𝐺 ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol ) | 
						
							| 79 | 51 78 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } )  ∈  dom  vol ) | 
						
							| 80 |  | mblvol | ⊢ ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } )  ∈  dom  vol  →  ( vol ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } ) )  =  ( vol* ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } ) ) ) | 
						
							| 81 | 79 80 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } ) )  =  ( vol* ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } ) ) ) | 
						
							| 82 |  | mblss | ⊢ ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } )  ∈  dom  vol  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } )  ⊆  ℝ ) | 
						
							| 83 | 79 82 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } )  ⊆  ℝ ) | 
						
							| 84 |  | inss1 | ⊢ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } ) | 
						
							| 85 | 67 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∈  dom  vol ) | 
						
							| 86 |  | mblss | ⊢ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∈  dom  vol  →  ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ⊆  ℝ ) | 
						
							| 87 | 85 86 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ⊆  ℝ ) | 
						
							| 88 |  | mblvol | ⊢ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∈  dom  vol  →  ( vol ‘ ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } ) )  =  ( vol* ‘ ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } ) ) ) | 
						
							| 89 | 85 88 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  ( vol ‘ ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } ) )  =  ( vol* ‘ ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } ) ) ) | 
						
							| 90 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  𝑧  =  0 ) | 
						
							| 91 | 90 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  ( 𝑦  −  𝑧 )  =  ( 𝑦  −  0 ) ) | 
						
							| 92 | 49 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 93 | 92 | subid1d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  ( 𝑦  −  0 )  =  𝑦 ) | 
						
							| 94 | 91 93 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  ( 𝑦  −  𝑧 )  =  𝑦 ) | 
						
							| 95 | 94 | sneqd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  { ( 𝑦  −  𝑧 ) }  =  { 𝑦 } ) | 
						
							| 96 | 95 | imaeq2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  =  ( ◡ 𝐹  “  { 𝑦 } ) ) | 
						
							| 97 | 96 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  ( vol ‘ ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } ) )  =  ( vol ‘ ( ◡ 𝐹  “  { 𝑦 } ) ) ) | 
						
							| 98 |  | i1fima2sn | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑦 } ) )  ∈  ℝ ) | 
						
							| 99 | 1 98 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑦 } ) )  ∈  ℝ ) | 
						
							| 100 | 99 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑦 } ) )  ∈  ℝ ) | 
						
							| 101 | 97 100 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  ( vol ‘ ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } ) )  ∈  ℝ ) | 
						
							| 102 | 89 101 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  ( vol* ‘ ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } ) )  ∈  ℝ ) | 
						
							| 103 |  | ovolsscl | ⊢ ( ( ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∧  ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ⊆  ℝ  ∧  ( vol* ‘ ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } ) )  ∈  ℝ )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) | 
						
							| 104 | 84 87 102 103 | mp3an2i | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  =  0 ) )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) | 
						
							| 105 | 104 | expr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  ( 𝑧  =  0  →  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) ) | 
						
							| 106 |  | eldifsn | ⊢ ( 𝑧  ∈  ( ran  𝐺  ∖  { 0 } )  ↔  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  ≠  0 ) ) | 
						
							| 107 |  | inss2 | ⊢ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ( ◡ 𝐺  “  { 𝑧 } ) | 
						
							| 108 |  | eldifi | ⊢ ( 𝑧  ∈  ( ran  𝐺  ∖  { 0 } )  →  𝑧  ∈  ran  𝐺 ) | 
						
							| 109 |  | mblss | ⊢ ( ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol  →  ( ◡ 𝐺  “  { 𝑧 } )  ⊆  ℝ ) | 
						
							| 110 | 73 109 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  ( ◡ 𝐺  “  { 𝑧 } )  ⊆  ℝ ) | 
						
							| 111 | 108 110 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ◡ 𝐺  “  { 𝑧 } )  ⊆  ℝ ) | 
						
							| 112 |  | i1fima | ⊢ ( 𝐺  ∈  dom  ∫1  →  ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol ) | 
						
							| 113 | 2 112 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol ) | 
						
							| 114 | 113 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol ) | 
						
							| 115 |  | mblvol | ⊢ ( ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑧 } ) )  =  ( vol* ‘ ( ◡ 𝐺  “  { 𝑧 } ) ) ) | 
						
							| 116 | 114 115 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑧 } ) )  =  ( vol* ‘ ( ◡ 𝐺  “  { 𝑧 } ) ) ) | 
						
							| 117 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 118 |  | i1fima2sn | ⊢ ( ( 𝐺  ∈  dom  ∫1  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  ℝ ) | 
						
							| 119 | 117 118 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  ℝ ) | 
						
							| 120 | 116 119 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol* ‘ ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  ℝ ) | 
						
							| 121 |  | ovolsscl | ⊢ ( ( ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ( ◡ 𝐺  “  { 𝑧 } )  ∧  ( ◡ 𝐺  “  { 𝑧 } )  ⊆  ℝ  ∧  ( vol* ‘ ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  ℝ )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) | 
						
							| 122 | 107 111 120 121 | mp3an2i | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) | 
						
							| 123 | 106 122 | sylan2br | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  ( 𝑧  ∈  ran  𝐺  ∧  𝑧  ≠  0 ) )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) | 
						
							| 124 | 123 | expr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  ( 𝑧  ≠  0  →  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) ) | 
						
							| 125 | 105 124 | pm2.61dne | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) | 
						
							| 126 | 52 125 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  Σ 𝑧  ∈  ran  𝐺 ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) | 
						
							| 127 | 51 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ( vol* ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } ) )  =  ( vol* ‘ ∪  𝑧  ∈  ran  𝐺 ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) ) | 
						
							| 128 | 107 110 | sstrid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ℝ ) | 
						
							| 129 | 128 125 | jca | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ran  𝐺 )  →  ( ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ℝ  ∧  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) ) | 
						
							| 130 | 129 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ∀ 𝑧  ∈  ran  𝐺 ( ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ℝ  ∧  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) ) | 
						
							| 131 |  | ovolfiniun | ⊢ ( ( ran  𝐺  ∈  Fin  ∧  ∀ 𝑧  ∈  ran  𝐺 ( ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ℝ  ∧  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) )  →  ( vol* ‘ ∪  𝑧  ∈  ran  𝐺 ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ≤  Σ 𝑧  ∈  ran  𝐺 ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) ) | 
						
							| 132 | 52 130 131 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ( vol* ‘ ∪  𝑧  ∈  ran  𝐺 ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ≤  Σ 𝑧  ∈  ran  𝐺 ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) ) | 
						
							| 133 | 127 132 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ( vol* ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } ) )  ≤  Σ 𝑧  ∈  ran  𝐺 ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) ) | 
						
							| 134 |  | ovollecl | ⊢ ( ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } )  ⊆  ℝ  ∧  Σ 𝑧  ∈  ran  𝐺 ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ  ∧  ( vol* ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } ) )  ≤  Σ 𝑧  ∈  ran  𝐺 ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  −  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) )  →  ( vol* ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } ) )  ∈  ℝ ) | 
						
							| 135 | 83 126 133 134 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ( vol* ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } ) )  ∈  ℝ ) | 
						
							| 136 | 81 135 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑦 } ) )  ∈  ℝ ) | 
						
							| 137 | 12 45 79 136 | i1fd | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 )  ∈  dom  ∫1 ) |