Step |
Hyp |
Ref |
Expression |
1 |
|
i1fadd.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) |
2 |
|
i1fadd.2 |
⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) |
3 |
|
readdcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
4 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
5 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
7 |
|
i1ff |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
9 |
|
reex |
⊢ ℝ ∈ V |
10 |
9
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
11 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
12 |
4 6 8 10 10 11
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : ℝ ⟶ ℝ ) |
13 |
|
i1frn |
⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
15 |
|
i1frn |
⊢ ( 𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin ) |
16 |
2 15
|
syl |
⊢ ( 𝜑 → ran 𝐺 ∈ Fin ) |
17 |
|
xpfi |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin ) → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
18 |
14 16 17
|
syl2anc |
⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
19 |
|
eqid |
⊢ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) = ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) |
20 |
|
ovex |
⊢ ( 𝑢 + 𝑣 ) ∈ V |
21 |
19 20
|
fnmpoi |
⊢ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) Fn ( ran 𝐹 × ran 𝐺 ) |
22 |
|
dffn4 |
⊢ ( ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) Fn ( ran 𝐹 × ran 𝐺 ) ↔ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) : ( ran 𝐹 × ran 𝐺 ) –onto→ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) ) |
23 |
21 22
|
mpbi |
⊢ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) : ( ran 𝐹 × ran 𝐺 ) –onto→ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) |
24 |
|
fofi |
⊢ ( ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin ∧ ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) : ( ran 𝐹 × ran 𝐺 ) –onto→ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) ) → ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) ∈ Fin ) |
25 |
18 23 24
|
sylancl |
⊢ ( 𝜑 → ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) ∈ Fin ) |
26 |
|
eqid |
⊢ ( 𝑥 + 𝑦 ) = ( 𝑥 + 𝑦 ) |
27 |
|
rspceov |
⊢ ( ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ∧ ( 𝑥 + 𝑦 ) = ( 𝑥 + 𝑦 ) ) → ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) |
28 |
26 27
|
mp3an3 |
⊢ ( ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) → ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) |
29 |
|
ovex |
⊢ ( 𝑥 + 𝑦 ) ∈ V |
30 |
|
eqeq1 |
⊢ ( 𝑤 = ( 𝑥 + 𝑦 ) → ( 𝑤 = ( 𝑢 + 𝑣 ) ↔ ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) ) |
31 |
30
|
2rexbidv |
⊢ ( 𝑤 = ( 𝑥 + 𝑦 ) → ( ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) ↔ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) ) |
32 |
29 31
|
elab |
⊢ ( ( 𝑥 + 𝑦 ) ∈ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) } ↔ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) |
33 |
28 32
|
sylibr |
⊢ ( ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) → ( 𝑥 + 𝑦 ) ∈ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) } ) |
34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( 𝑥 + 𝑦 ) ∈ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) } ) |
35 |
6
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
36 |
|
dffn3 |
⊢ ( 𝐹 Fn ℝ ↔ 𝐹 : ℝ ⟶ ran 𝐹 ) |
37 |
35 36
|
sylib |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ran 𝐹 ) |
38 |
8
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
39 |
|
dffn3 |
⊢ ( 𝐺 Fn ℝ ↔ 𝐺 : ℝ ⟶ ran 𝐺 ) |
40 |
38 39
|
sylib |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ran 𝐺 ) |
41 |
34 37 40 10 10 11
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : ℝ ⟶ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) } ) |
42 |
41
|
frnd |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ⊆ { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) } ) |
43 |
19
|
rnmpo |
⊢ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) = { 𝑤 ∣ ∃ 𝑢 ∈ ran 𝐹 ∃ 𝑣 ∈ ran 𝐺 𝑤 = ( 𝑢 + 𝑣 ) } |
44 |
42 43
|
sseqtrrdi |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ⊆ ran ( 𝑢 ∈ ran 𝐹 , 𝑣 ∈ ran 𝐺 ↦ ( 𝑢 + 𝑣 ) ) ) |
45 |
25 44
|
ssfid |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ∈ Fin ) |
46 |
12
|
frnd |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ⊆ ℝ ) |
47 |
46
|
ssdifssd |
⊢ ( 𝜑 → ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ⊆ ℝ ) |
48 |
47
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → 𝑦 ∈ ℝ ) |
49 |
48
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
50 |
1 2
|
i1faddlem |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) = ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
51 |
49 50
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) = ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
52 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ran 𝐺 ∈ Fin ) |
53 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐹 ∈ dom ∫1 ) |
54 |
|
i1fmbf |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn ) |
55 |
53 54
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐹 ∈ MblFn ) |
56 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐹 : ℝ ⟶ ℝ ) |
57 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝐹 ∘f + 𝐺 ) : ℝ ⟶ ℝ ) |
58 |
57
|
frnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ran ( 𝐹 ∘f + 𝐺 ) ⊆ ℝ ) |
59 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) → 𝑦 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) |
60 |
59
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑦 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) |
61 |
58 60
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑦 ∈ ℝ ) |
62 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → 𝐺 : ℝ ⟶ ℝ ) |
63 |
62
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ran 𝐺 ⊆ ℝ ) |
64 |
63
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝑧 ∈ ℝ ) |
65 |
61 64
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 − 𝑧 ) ∈ ℝ ) |
66 |
|
mbfimasn |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ∧ ( 𝑦 − 𝑧 ) ∈ ℝ ) → ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∈ dom vol ) |
67 |
55 56 65 66
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∈ dom vol ) |
68 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐺 ∈ dom ∫1 ) |
69 |
|
i1fmbf |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 ∈ MblFn ) |
70 |
68 69
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐺 ∈ MblFn ) |
71 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → 𝐺 : ℝ ⟶ ℝ ) |
72 |
|
mbfimasn |
⊢ ( ( 𝐺 ∈ MblFn ∧ 𝐺 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
73 |
70 71 64 72
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
74 |
|
inmbl |
⊢ ( ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∈ dom vol ∧ ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) → ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
75 |
67 73 74
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
76 |
75
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ∀ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
77 |
|
finiunmbl |
⊢ ( ( ran 𝐺 ∈ Fin ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) → ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
78 |
52 76 77
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ dom vol ) |
79 |
51 78
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ∈ dom vol ) |
80 |
|
mblvol |
⊢ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ∈ dom vol → ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) = ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ) |
81 |
79 80
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) = ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ) |
82 |
|
mblss |
⊢ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ∈ dom vol → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ⊆ ℝ ) |
83 |
79 82
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ⊆ ℝ ) |
84 |
|
inss1 |
⊢ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) |
85 |
67
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∈ dom vol ) |
86 |
|
mblss |
⊢ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∈ dom vol → ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ⊆ ℝ ) |
87 |
85 86
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ⊆ ℝ ) |
88 |
|
mblvol |
⊢ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) ) |
89 |
85 88
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) ) |
90 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → 𝑧 = 0 ) |
91 |
90
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( 𝑦 − 𝑧 ) = ( 𝑦 − 0 ) ) |
92 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → 𝑦 ∈ ℂ ) |
93 |
92
|
subid1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( 𝑦 − 0 ) = 𝑦 ) |
94 |
91 93
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( 𝑦 − 𝑧 ) = 𝑦 ) |
95 |
94
|
sneqd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → { ( 𝑦 − 𝑧 ) } = { 𝑦 } ) |
96 |
95
|
imaeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) = ( ◡ 𝐹 “ { 𝑦 } ) ) |
97 |
96
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) = ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ) |
98 |
|
i1fima2sn |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
99 |
1 98
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
100 |
99
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
101 |
97 100
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) ∈ ℝ ) |
102 |
89 101
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( vol* ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) ∈ ℝ ) |
103 |
|
ovolsscl |
⊢ ( ( ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∧ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ) ∈ ℝ ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
104 |
84 87 102 103
|
mp3an2i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 = 0 ) ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
105 |
104
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑧 = 0 → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) |
106 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ↔ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 ≠ 0 ) ) |
107 |
|
inss2 |
⊢ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) |
108 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) → 𝑧 ∈ ran 𝐺 ) |
109 |
|
mblss |
⊢ ( ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol → ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ℝ ) |
110 |
73 109
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ℝ ) |
111 |
108 110
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ℝ ) |
112 |
|
i1fima |
⊢ ( 𝐺 ∈ dom ∫1 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
113 |
2 112
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
114 |
113
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol ) |
115 |
|
mblvol |
⊢ ( ( ◡ 𝐺 “ { 𝑧 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) = ( vol* ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
116 |
114 115
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) = ( vol* ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ) |
117 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → 𝐺 ∈ dom ∫1 ) |
118 |
|
i1fima2sn |
⊢ ( ( 𝐺 ∈ dom ∫1 ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ ℝ ) |
119 |
117 118
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ ℝ ) |
120 |
116 119
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ ℝ ) |
121 |
|
ovolsscl |
⊢ ( ( ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑧 } ) ∧ ( ◡ 𝐺 “ { 𝑧 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐺 “ { 𝑧 } ) ) ∈ ℝ ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
122 |
107 111 120 121
|
mp3an2i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
123 |
106 122
|
sylan2br |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ran 𝐺 ∧ 𝑧 ≠ 0 ) ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
124 |
123
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑧 ≠ 0 → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) |
125 |
105 124
|
pm2.61dne |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
126 |
52 125
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → Σ 𝑧 ∈ ran 𝐺 ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) |
127 |
51
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) = ( vol* ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
128 |
107 110
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ) |
129 |
128 125
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) ∧ 𝑧 ∈ ran 𝐺 ) → ( ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) |
130 |
129
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ∀ 𝑧 ∈ ran 𝐺 ( ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) |
131 |
|
ovolfiniun |
⊢ ( ( ran 𝐺 ∈ Fin ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ≤ Σ 𝑧 ∈ ran 𝐺 ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
132 |
52 130 131
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ∪ 𝑧 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ≤ Σ 𝑧 ∈ ran 𝐺 ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
133 |
127 132
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ≤ Σ 𝑧 ∈ ran 𝐺 ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) |
134 |
|
ovollecl |
⊢ ( ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ⊆ ℝ ∧ Σ 𝑧 ∈ ran 𝐺 ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ∈ ℝ ∧ ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ≤ Σ 𝑧 ∈ ran 𝐺 ( vol* ‘ ( ( ◡ 𝐹 “ { ( 𝑦 − 𝑧 ) } ) ∩ ( ◡ 𝐺 “ { 𝑧 } ) ) ) ) → ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ∈ ℝ ) |
135 |
83 126 133 134
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol* ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ∈ ℝ ) |
136 |
81 135
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑦 } ) ) ∈ ℝ ) |
137 |
12 45 79 136
|
i1fd |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ dom ∫1 ) |