| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fadd.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) |
| 2 |
|
i1fadd.2 |
⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) |
| 3 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
| 4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 5 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 6 |
|
i1ff |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 8 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 9 |
|
reex |
⊢ ℝ ∈ V |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 11 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 12 |
5 8 10 10 11
|
offn |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) Fn ℝ ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝐹 ∘f + 𝐺 ) Fn ℝ ) |
| 14 |
|
fniniseg |
⊢ ( ( 𝐹 ∘f + 𝐺 ) Fn ℝ → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝐴 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝐴 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 16 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝐺 Fn ℝ ) |
| 17 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝑧 ∈ ℝ ) |
| 18 |
|
fnfvelrn |
⊢ ( ( 𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ) |
| 19 |
16 17 18
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ) |
| 20 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) |
| 21 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 22 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 23 |
5 8 10 10 11 21 22
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 24 |
23
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 25 |
20 24
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝐴 = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 26 |
25
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) − ( 𝐺 ‘ 𝑧 ) ) ) |
| 27 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 28 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : ℝ ⟶ ℂ ) |
| 29 |
4 27 28
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 31 |
30 17
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 32 |
|
fss |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐺 : ℝ ⟶ ℂ ) |
| 33 |
7 27 32
|
sylancl |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℂ ) |
| 34 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝐺 : ℝ ⟶ ℂ ) |
| 35 |
34 17
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 36 |
31 35
|
pncand |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) − ( 𝐺 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 37 |
26 36
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) ) |
| 38 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝐹 Fn ℝ ) |
| 39 |
|
fniniseg |
⊢ ( 𝐹 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
| 40 |
38 39
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
| 41 |
17 37 40
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ) |
| 42 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 43 |
|
fniniseg |
⊢ ( 𝐺 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 44 |
16 43
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 45 |
17 42 44
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝑧 ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) |
| 46 |
41 45
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) |
| 47 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝐴 − 𝑦 ) = ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) ) |
| 48 |
47
|
sneqd |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → { ( 𝐴 − 𝑦 ) } = { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) |
| 49 |
48
|
imaeq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) = ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ) |
| 50 |
|
sneq |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → { 𝑦 } = { ( 𝐺 ‘ 𝑧 ) } ) |
| 51 |
50
|
imaeq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ◡ 𝐺 “ { 𝑦 } ) = ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) |
| 52 |
49 51
|
ineq12d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) = ( ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) |
| 53 |
52
|
eleq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) ) |
| 54 |
53
|
rspcev |
⊢ ( ( ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ∧ 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) → ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
| 55 |
19 46 54
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) → ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
| 56 |
55
|
ex |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) → ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
| 57 |
|
elin |
⊢ ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∧ 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
| 58 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → 𝐹 Fn ℝ ) |
| 59 |
|
fniniseg |
⊢ ( 𝐹 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ) ) ) |
| 60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ) ) ) |
| 61 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → 𝐺 Fn ℝ ) |
| 62 |
|
fniniseg |
⊢ ( 𝐺 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 63 |
61 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 64 |
60 63
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∧ 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ( ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
| 65 |
|
anandi |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ↔ ( ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 66 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → 𝑧 ∈ ℝ ) |
| 67 |
23
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 68 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ) |
| 69 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( 𝐺 ‘ 𝑧 ) = 𝑦 ) |
| 70 |
68 69
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( ( 𝐹 ‘ 𝑧 ) + ( 𝐺 ‘ 𝑧 ) ) = ( ( 𝐴 − 𝑦 ) + 𝑦 ) ) |
| 71 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → 𝐴 ∈ ℂ ) |
| 72 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → 𝐺 : ℝ ⟶ ℂ ) |
| 73 |
72 66
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 74 |
69 73
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → 𝑦 ∈ ℂ ) |
| 75 |
71 74
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( ( 𝐴 − 𝑦 ) + 𝑦 ) = 𝐴 ) |
| 76 |
67 70 75
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) |
| 77 |
66 76
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) |
| 78 |
77
|
ex |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 79 |
65 78
|
biimtrrid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 − 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 80 |
64 79
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∧ 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 81 |
57 80
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 82 |
81
|
rexlimdvw |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 83 |
56 82
|
impbid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ↔ ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
| 84 |
15 83
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝐴 } ) ↔ ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
| 85 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ∃ 𝑦 ∈ ran 𝐺 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
| 86 |
84 85
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝐴 } ) ↔ 𝑧 ∈ ∪ 𝑦 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
| 87 |
86
|
eqrdv |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℂ ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝐴 } ) = ∪ 𝑦 ∈ ran 𝐺 ( ( ◡ 𝐹 “ { ( 𝐴 − 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |