Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f | ⊢ ( 𝐹 ∈ dom ∫1 ↔ ( 𝐹 ∈ MblFn ∧ ( 𝐹 : ℝ ⟶ ℝ ∧ ran 𝐹 ∈ Fin ∧ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝐹 ∈ dom ∫1 → ( 𝐹 : ℝ ⟶ ℝ ∧ ran 𝐹 ∈ Fin ∧ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) |
| 3 | 2 | simp1d | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |