Step |
Hyp |
Ref |
Expression |
1 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
1
|
feqmptd |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
3 |
|
i1fmbf |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn ) |
4 |
2 3
|
eqeltrrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
5 |
|
simpr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
6 |
5
|
biantrurd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
7 |
6
|
ifbid |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
8 |
7
|
mpteq2dva |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
11 |
10
|
i1fpos |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
12 |
|
0re |
⊢ 0 ∈ ℝ |
13 |
1
|
ffvelrnda |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
14 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
15 |
12 13 14
|
sylancr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
16 |
15
|
ralrimiva |
⊢ ( 𝐹 ∈ dom ∫1 → ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
17 |
|
reex |
⊢ ℝ ∈ V |
18 |
17
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ℝ ∈ V ) |
19 |
12
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) |
20 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
21 |
|
c0ex |
⊢ 0 ∈ V |
22 |
20 21
|
ifex |
⊢ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
23 |
22
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
24 |
|
fconstmpt |
⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) |
25 |
24
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
26 |
|
eqidd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
27 |
18 19 23 25 26
|
ofrfval2 |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
28 |
16 27
|
mpbird |
⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
29 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
30 |
29
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ℝ ⊆ ℂ ) |
31 |
22 10
|
fnmpti |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ |
32 |
31
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ ) |
33 |
30 32
|
0pledm |
⊢ ( 𝐹 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
34 |
28 33
|
mpbird |
⊢ ( 𝐹 ∈ dom ∫1 → 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
35 |
|
itg2itg1 |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
36 |
11 34 35
|
syl2anc |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
37 |
9 36
|
eqtr3d |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
38 |
|
itg1cl |
⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
39 |
11 38
|
syl |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
40 |
37 39
|
eqeltrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
41 |
5
|
biantrurd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) ) ) |
42 |
41
|
ifbid |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
43 |
42
|
mpteq2dva |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
44 |
43
|
fveq2d |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
45 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
46 |
45
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → - 1 ∈ ℝ ) |
47 |
|
fconstmpt |
⊢ ( ℝ × { - 1 } ) = ( 𝑥 ∈ ℝ ↦ - 1 ) |
48 |
47
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { - 1 } ) = ( 𝑥 ∈ ℝ ↦ - 1 ) ) |
49 |
18 46 13 48 2
|
offval2 |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { - 1 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ ℝ ↦ ( - 1 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
50 |
13
|
recnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
51 |
50
|
mulm1d |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( - 1 · ( 𝐹 ‘ 𝑥 ) ) = - ( 𝐹 ‘ 𝑥 ) ) |
52 |
51
|
mpteq2dva |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( - 1 · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ - ( 𝐹 ‘ 𝑥 ) ) ) |
53 |
49 52
|
eqtrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { - 1 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ ℝ ↦ - ( 𝐹 ‘ 𝑥 ) ) ) |
54 |
|
id |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ dom ∫1 ) |
55 |
45
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → - 1 ∈ ℝ ) |
56 |
54 55
|
i1fmulc |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { - 1 } ) ∘f · 𝐹 ) ∈ dom ∫1 ) |
57 |
53 56
|
eqeltrrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ - ( 𝐹 ‘ 𝑥 ) ) ∈ dom ∫1 ) |
58 |
57
|
i1fposd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
59 |
13
|
renegcld |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → - ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
60 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ - ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
61 |
12 59 60
|
sylancr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
62 |
61
|
ralrimiva |
⊢ ( 𝐹 ∈ dom ∫1 → ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
63 |
|
negex |
⊢ - ( 𝐹 ‘ 𝑥 ) ∈ V |
64 |
63 21
|
ifex |
⊢ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
65 |
64
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
66 |
|
eqidd |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
67 |
18 19 65 25 66
|
ofrfval2 |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
68 |
62 67
|
mpbird |
⊢ ( 𝐹 ∈ dom ∫1 → ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
69 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
70 |
64 69
|
fnmpti |
⊢ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ |
71 |
70
|
a1i |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) Fn ℝ ) |
72 |
30 71
|
0pledm |
⊢ ( 𝐹 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ↔ ( ℝ × { 0 } ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
73 |
68 72
|
mpbird |
⊢ ( 𝐹 ∈ dom ∫1 → 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
74 |
|
itg2itg1 |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
75 |
58 73 74
|
syl2anc |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
76 |
44 75
|
eqtr3d |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ) |
77 |
|
itg1cl |
⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
78 |
58 77
|
syl |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝑥 ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
79 |
76 78
|
eqeltrd |
⊢ ( 𝐹 ∈ dom ∫1 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
80 |
13
|
iblrelem |
⊢ ( 𝐹 ∈ dom ∫1 → ( ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ℝ ∧ 0 ≤ - ( 𝐹 ‘ 𝑥 ) ) , - ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) ) ) |
81 |
4 40 79 80
|
mpbir3and |
⊢ ( 𝐹 ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
82 |
2 81
|
eqeltrd |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 ∈ 𝐿1 ) |