| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1fima | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ◡ 𝐹  “  𝐴 )  ∈  dom  vol ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( ◡ 𝐹  “  𝐴 )  ∈  dom  vol ) | 
						
							| 3 |  | mblvol | ⊢ ( ( ◡ 𝐹  “  𝐴 )  ∈  dom  vol  →  ( vol ‘ ( ◡ 𝐹  “  𝐴 ) )  =  ( vol* ‘ ( ◡ 𝐹  “  𝐴 ) ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( vol ‘ ( ◡ 𝐹  “  𝐴 ) )  =  ( vol* ‘ ( ◡ 𝐹  “  𝐴 ) ) ) | 
						
							| 5 |  | i1ff | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 7 |  | ffun | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  Fun  𝐹 ) | 
						
							| 8 |  | inpreima | ⊢ ( Fun  𝐹  →  ( ◡ 𝐹  “  ( 𝐴  ∩  ran  𝐹 ) )  =  ( ( ◡ 𝐹  “  𝐴 )  ∩  ( ◡ 𝐹  “  ran  𝐹 ) ) ) | 
						
							| 9 | 6 7 8 | 3syl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( ◡ 𝐹  “  ( 𝐴  ∩  ran  𝐹 ) )  =  ( ( ◡ 𝐹  “  𝐴 )  ∩  ( ◡ 𝐹  “  ran  𝐹 ) ) ) | 
						
							| 10 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝐴 )  ⊆  dom  𝐹 | 
						
							| 11 |  | cnvimarndm | ⊢ ( ◡ 𝐹  “  ran  𝐹 )  =  dom  𝐹 | 
						
							| 12 | 10 11 | sseqtrri | ⊢ ( ◡ 𝐹  “  𝐴 )  ⊆  ( ◡ 𝐹  “  ran  𝐹 ) | 
						
							| 13 |  | dfss2 | ⊢ ( ( ◡ 𝐹  “  𝐴 )  ⊆  ( ◡ 𝐹  “  ran  𝐹 )  ↔  ( ( ◡ 𝐹  “  𝐴 )  ∩  ( ◡ 𝐹  “  ran  𝐹 ) )  =  ( ◡ 𝐹  “  𝐴 ) ) | 
						
							| 14 | 12 13 | mpbi | ⊢ ( ( ◡ 𝐹  “  𝐴 )  ∩  ( ◡ 𝐹  “  ran  𝐹 ) )  =  ( ◡ 𝐹  “  𝐴 ) | 
						
							| 15 | 9 14 | eqtr2di | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( ◡ 𝐹  “  𝐴 )  =  ( ◡ 𝐹  “  ( 𝐴  ∩  ran  𝐹 ) ) ) | 
						
							| 16 |  | elinel1 | ⊢ ( 0  ∈  ( 𝐴  ∩  ran  𝐹 )  →  0  ∈  𝐴 ) | 
						
							| 17 | 16 | con3i | ⊢ ( ¬  0  ∈  𝐴  →  ¬  0  ∈  ( 𝐴  ∩  ran  𝐹 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ¬  0  ∈  ( 𝐴  ∩  ran  𝐹 ) ) | 
						
							| 19 |  | disjsn | ⊢ ( ( ( 𝐴  ∩  ran  𝐹 )  ∩  { 0 } )  =  ∅  ↔  ¬  0  ∈  ( 𝐴  ∩  ran  𝐹 ) ) | 
						
							| 20 | 18 19 | sylibr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( ( 𝐴  ∩  ran  𝐹 )  ∩  { 0 } )  =  ∅ ) | 
						
							| 21 |  | inss2 | ⊢ ( 𝐴  ∩  ran  𝐹 )  ⊆  ran  𝐹 | 
						
							| 22 | 5 | frnd | ⊢ ( 𝐹  ∈  dom  ∫1  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 23 | 21 22 | sstrid | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( 𝐴  ∩  ran  𝐹 )  ⊆  ℝ ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( 𝐴  ∩  ran  𝐹 )  ⊆  ℝ ) | 
						
							| 25 |  | reldisj | ⊢ ( ( 𝐴  ∩  ran  𝐹 )  ⊆  ℝ  →  ( ( ( 𝐴  ∩  ran  𝐹 )  ∩  { 0 } )  =  ∅  ↔  ( 𝐴  ∩  ran  𝐹 )  ⊆  ( ℝ  ∖  { 0 } ) ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( ( ( 𝐴  ∩  ran  𝐹 )  ∩  { 0 } )  =  ∅  ↔  ( 𝐴  ∩  ran  𝐹 )  ⊆  ( ℝ  ∖  { 0 } ) ) ) | 
						
							| 27 | 20 26 | mpbid | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( 𝐴  ∩  ran  𝐹 )  ⊆  ( ℝ  ∖  { 0 } ) ) | 
						
							| 28 |  | imass2 | ⊢ ( ( 𝐴  ∩  ran  𝐹 )  ⊆  ( ℝ  ∖  { 0 } )  →  ( ◡ 𝐹  “  ( 𝐴  ∩  ran  𝐹 ) )  ⊆  ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( ◡ 𝐹  “  ( 𝐴  ∩  ran  𝐹 ) )  ⊆  ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) ) ) | 
						
							| 30 | 15 29 | eqsstrd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( ◡ 𝐹  “  𝐴 )  ⊆  ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) ) ) | 
						
							| 31 |  | i1fima | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) )  ∈  dom  vol ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) )  ∈  dom  vol ) | 
						
							| 33 |  | mblss | ⊢ ( ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) )  ∈  dom  vol  →  ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) )  ⊆  ℝ ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) )  ⊆  ℝ ) | 
						
							| 35 |  | mblvol | ⊢ ( ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) )  ∈  dom  vol  →  ( vol ‘ ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) ) )  =  ( vol* ‘ ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) ) ) ) | 
						
							| 36 | 32 35 | syl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( vol ‘ ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) ) )  =  ( vol* ‘ ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) ) ) ) | 
						
							| 37 |  | isi1f | ⊢ ( 𝐹  ∈  dom  ∫1  ↔  ( 𝐹  ∈  MblFn  ∧  ( 𝐹 : ℝ ⟶ ℝ  ∧  ran  𝐹  ∈  Fin  ∧  ( vol ‘ ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) ) )  ∈  ℝ ) ) ) | 
						
							| 38 | 37 | simprbi | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( 𝐹 : ℝ ⟶ ℝ  ∧  ran  𝐹  ∈  Fin  ∧  ( vol ‘ ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) ) )  ∈  ℝ ) ) | 
						
							| 39 | 38 | simp3d | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( vol ‘ ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) ) )  ∈  ℝ ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( vol ‘ ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) ) )  ∈  ℝ ) | 
						
							| 41 | 36 40 | eqeltrrd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( vol* ‘ ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) ) )  ∈  ℝ ) | 
						
							| 42 |  | ovolsscl | ⊢ ( ( ( ◡ 𝐹  “  𝐴 )  ⊆  ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) )  ∧  ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) )  ⊆  ℝ  ∧  ( vol* ‘ ( ◡ 𝐹  “  ( ℝ  ∖  { 0 } ) ) )  ∈  ℝ )  →  ( vol* ‘ ( ◡ 𝐹  “  𝐴 ) )  ∈  ℝ ) | 
						
							| 43 | 30 34 41 42 | syl3anc | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( vol* ‘ ( ◡ 𝐹  “  𝐴 ) )  ∈  ℝ ) | 
						
							| 44 | 4 43 | eqeltrd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ¬  0  ∈  𝐴 )  →  ( vol ‘ ( ◡ 𝐹  “  𝐴 ) )  ∈  ℝ ) |