| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1fadd.1 | ⊢ ( 𝜑  →  𝐹  ∈  dom  ∫1 ) | 
						
							| 2 |  | i1fadd.2 | ⊢ ( 𝜑  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 3 |  | remulcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  ·  𝑦 )  ∈  ℝ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℝ ) | 
						
							| 5 |  | i1ff | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 7 |  | i1ff | ⊢ ( 𝐺  ∈  dom  ∫1  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 9 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 11 |  | inidm | ⊢ ( ℝ  ∩  ℝ )  =  ℝ | 
						
							| 12 | 4 6 8 10 10 11 | off | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 ) : ℝ ⟶ ℝ ) | 
						
							| 13 |  | i1frn | ⊢ ( 𝐹  ∈  dom  ∫1  →  ran  𝐹  ∈  Fin ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝜑  →  ran  𝐹  ∈  Fin ) | 
						
							| 15 |  | i1frn | ⊢ ( 𝐺  ∈  dom  ∫1  →  ran  𝐺  ∈  Fin ) | 
						
							| 16 | 2 15 | syl | ⊢ ( 𝜑  →  ran  𝐺  ∈  Fin ) | 
						
							| 17 |  | xpfi | ⊢ ( ( ran  𝐹  ∈  Fin  ∧  ran  𝐺  ∈  Fin )  →  ( ran  𝐹  ×  ran  𝐺 )  ∈  Fin ) | 
						
							| 18 | 14 16 17 | syl2anc | ⊢ ( 𝜑  →  ( ran  𝐹  ×  ran  𝐺 )  ∈  Fin ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) )  =  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) ) | 
						
							| 20 |  | ovex | ⊢ ( 𝑢  ·  𝑣 )  ∈  V | 
						
							| 21 | 19 20 | fnmpoi | ⊢ ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) )  Fn  ( ran  𝐹  ×  ran  𝐺 ) | 
						
							| 22 |  | dffn4 | ⊢ ( ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) )  Fn  ( ran  𝐹  ×  ran  𝐺 )  ↔  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) ) : ( ran  𝐹  ×  ran  𝐺 ) –onto→ ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) ) ) | 
						
							| 23 | 21 22 | mpbi | ⊢ ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) ) : ( ran  𝐹  ×  ran  𝐺 ) –onto→ ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) ) | 
						
							| 24 |  | fofi | ⊢ ( ( ( ran  𝐹  ×  ran  𝐺 )  ∈  Fin  ∧  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) ) : ( ran  𝐹  ×  ran  𝐺 ) –onto→ ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) ) )  →  ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) )  ∈  Fin ) | 
						
							| 25 | 18 23 24 | sylancl | ⊢ ( 𝜑  →  ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) )  ∈  Fin ) | 
						
							| 26 |  | eqid | ⊢ ( 𝑥  ·  𝑦 )  =  ( 𝑥  ·  𝑦 ) | 
						
							| 27 |  | rspceov | ⊢ ( ( 𝑥  ∈  ran  𝐹  ∧  𝑦  ∈  ran  𝐺  ∧  ( 𝑥  ·  𝑦 )  =  ( 𝑥  ·  𝑦 ) )  →  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 ( 𝑥  ·  𝑦 )  =  ( 𝑢  ·  𝑣 ) ) | 
						
							| 28 | 26 27 | mp3an3 | ⊢ ( ( 𝑥  ∈  ran  𝐹  ∧  𝑦  ∈  ran  𝐺 )  →  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 ( 𝑥  ·  𝑦 )  =  ( 𝑢  ·  𝑣 ) ) | 
						
							| 29 |  | ovex | ⊢ ( 𝑥  ·  𝑦 )  ∈  V | 
						
							| 30 |  | eqeq1 | ⊢ ( 𝑤  =  ( 𝑥  ·  𝑦 )  →  ( 𝑤  =  ( 𝑢  ·  𝑣 )  ↔  ( 𝑥  ·  𝑦 )  =  ( 𝑢  ·  𝑣 ) ) ) | 
						
							| 31 | 30 | 2rexbidv | ⊢ ( 𝑤  =  ( 𝑥  ·  𝑦 )  →  ( ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  ·  𝑣 )  ↔  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 ( 𝑥  ·  𝑦 )  =  ( 𝑢  ·  𝑣 ) ) ) | 
						
							| 32 | 29 31 | elab | ⊢ ( ( 𝑥  ·  𝑦 )  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  ·  𝑣 ) }  ↔  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 ( 𝑥  ·  𝑦 )  =  ( 𝑢  ·  𝑣 ) ) | 
						
							| 33 | 28 32 | sylibr | ⊢ ( ( 𝑥  ∈  ran  𝐹  ∧  𝑦  ∈  ran  𝐺 )  →  ( 𝑥  ·  𝑦 )  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  ·  𝑣 ) } ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐹  ∧  𝑦  ∈  ran  𝐺 ) )  →  ( 𝑥  ·  𝑦 )  ∈  { 𝑤  ∣  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  ·  𝑣 ) } ) | 
						
							| 35 | 6 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ℝ ) | 
						
							| 36 |  | dffn3 | ⊢ ( 𝐹  Fn  ℝ  ↔  𝐹 : ℝ ⟶ ran  𝐹 ) | 
						
							| 37 | 35 36 | sylib | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ran  𝐹 ) | 
						
							| 38 | 8 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  ℝ ) | 
						
							| 39 |  | dffn3 | ⊢ ( 𝐺  Fn  ℝ  ↔  𝐺 : ℝ ⟶ ran  𝐺 ) | 
						
							| 40 | 38 39 | sylib | ⊢ ( 𝜑  →  𝐺 : ℝ ⟶ ran  𝐺 ) | 
						
							| 41 | 34 37 40 10 10 11 | off | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 ) : ℝ ⟶ { 𝑤  ∣  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  ·  𝑣 ) } ) | 
						
							| 42 | 41 | frnd | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘f   ·  𝐺 )  ⊆  { 𝑤  ∣  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  ·  𝑣 ) } ) | 
						
							| 43 | 19 | rnmpo | ⊢ ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) )  =  { 𝑤  ∣  ∃ 𝑢  ∈  ran  𝐹 ∃ 𝑣  ∈  ran  𝐺 𝑤  =  ( 𝑢  ·  𝑣 ) } | 
						
							| 44 | 42 43 | sseqtrrdi | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘f   ·  𝐺 )  ⊆  ran  ( 𝑢  ∈  ran  𝐹 ,  𝑣  ∈  ran  𝐺  ↦  ( 𝑢  ·  𝑣 ) ) ) | 
						
							| 45 | 25 44 | ssfid | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘f   ·  𝐺 )  ∈  Fin ) | 
						
							| 46 | 12 | frnd | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘f   ·  𝐺 )  ⊆  ℝ ) | 
						
							| 47 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 48 | 46 47 | sstrdi | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘f   ·  𝐺 )  ⊆  ℂ ) | 
						
							| 49 | 48 | ssdifd | ⊢ ( 𝜑  →  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } )  ⊆  ( ℂ  ∖  { 0 } ) ) | 
						
							| 50 | 49 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  𝑦  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 51 | 1 2 | i1fmullem | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } )  =  ∪  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) | 
						
							| 52 | 50 51 | syldan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } )  =  ∪  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) | 
						
							| 53 |  | difss | ⊢ ( ran  𝐺  ∖  { 0 } )  ⊆  ran  𝐺 | 
						
							| 54 |  | ssfi | ⊢ ( ( ran  𝐺  ∈  Fin  ∧  ( ran  𝐺  ∖  { 0 } )  ⊆  ran  𝐺 )  →  ( ran  𝐺  ∖  { 0 } )  ∈  Fin ) | 
						
							| 55 | 16 53 54 | sylancl | ⊢ ( 𝜑  →  ( ran  𝐺  ∖  { 0 } )  ∈  Fin ) | 
						
							| 56 |  | i1fima | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∈  dom  vol ) | 
						
							| 57 | 1 56 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∈  dom  vol ) | 
						
							| 58 |  | i1fima | ⊢ ( 𝐺  ∈  dom  ∫1  →  ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol ) | 
						
							| 59 | 2 58 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol ) | 
						
							| 60 |  | inmbl | ⊢ ( ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∈  dom  vol  ∧  ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol )  →  ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol ) | 
						
							| 61 | 57 59 60 | syl2anc | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol ) | 
						
							| 62 | 61 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol ) | 
						
							| 63 |  | finiunmbl | ⊢ ( ( ( ran  𝐺  ∖  { 0 } )  ∈  Fin  ∧  ∀ 𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol )  →  ∪  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol ) | 
						
							| 64 | 55 62 63 | syl2anc | ⊢ ( 𝜑  →  ∪  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  ∪  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol ) | 
						
							| 66 | 52 65 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } )  ∈  dom  vol ) | 
						
							| 67 |  | mblvol | ⊢ ( ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } )  ∈  dom  vol  →  ( vol ‘ ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } ) )  =  ( vol* ‘ ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } ) ) ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } ) )  =  ( vol* ‘ ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } ) ) ) | 
						
							| 69 |  | mblss | ⊢ ( ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } )  ∈  dom  vol  →  ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } )  ⊆  ℝ ) | 
						
							| 70 | 66 69 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } )  ⊆  ℝ ) | 
						
							| 71 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  ( ran  𝐺  ∖  { 0 } )  ∈  Fin ) | 
						
							| 72 |  | inss2 | ⊢ ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ( ◡ 𝐺  “  { 𝑧 } ) | 
						
							| 73 | 72 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ( ◡ 𝐺  “  { 𝑧 } ) ) | 
						
							| 74 | 59 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol ) | 
						
							| 75 |  | mblss | ⊢ ( ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol  →  ( ◡ 𝐺  “  { 𝑧 } )  ⊆  ℝ ) | 
						
							| 76 | 74 75 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ◡ 𝐺  “  { 𝑧 } )  ⊆  ℝ ) | 
						
							| 77 |  | mblvol | ⊢ ( ( ◡ 𝐺  “  { 𝑧 } )  ∈  dom  vol  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑧 } ) )  =  ( vol* ‘ ( ◡ 𝐺  “  { 𝑧 } ) ) ) | 
						
							| 78 | 74 77 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑧 } ) )  =  ( vol* ‘ ( ◡ 𝐺  “  { 𝑧 } ) ) ) | 
						
							| 79 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  𝐺  ∈  dom  ∫1 ) | 
						
							| 80 |  | i1fima2sn | ⊢ ( ( 𝐺  ∈  dom  ∫1  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  ℝ ) | 
						
							| 81 | 79 80 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  ℝ ) | 
						
							| 82 | 78 81 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol* ‘ ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  ℝ ) | 
						
							| 83 |  | ovolsscl | ⊢ ( ( ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ( ◡ 𝐺  “  { 𝑧 } )  ∧  ( ◡ 𝐺  “  { 𝑧 } )  ⊆  ℝ  ∧  ( vol* ‘ ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  ℝ )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) | 
						
							| 84 | 73 76 82 83 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) | 
						
							| 85 | 71 84 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  Σ 𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) | 
						
							| 86 | 52 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  ( vol* ‘ ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } ) )  =  ( vol* ‘ ∪  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) ) | 
						
							| 87 |  | mblss | ⊢ ( ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ∈  dom  vol  →  ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ℝ ) | 
						
							| 88 | 61 87 | syl | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ℝ ) | 
						
							| 89 | 88 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ℝ ) | 
						
							| 90 | 89 84 | jca | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  ∧  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ℝ  ∧  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) ) | 
						
							| 91 | 90 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  ∀ 𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ℝ  ∧  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) ) | 
						
							| 92 |  | ovolfiniun | ⊢ ( ( ( ran  𝐺  ∖  { 0 } )  ∈  Fin  ∧  ∀ 𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) )  ⊆  ℝ  ∧  ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ ) )  →  ( vol* ‘ ∪  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ≤  Σ 𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) ) | 
						
							| 93 | 71 91 92 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  ( vol* ‘ ∪  𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ≤  Σ 𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) ) | 
						
							| 94 | 86 93 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  ( vol* ‘ ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } ) )  ≤  Σ 𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) ) | 
						
							| 95 |  | ovollecl | ⊢ ( ( ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } )  ⊆  ℝ  ∧  Σ 𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) )  ∈  ℝ  ∧  ( vol* ‘ ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } ) )  ≤  Σ 𝑧  ∈  ( ran  𝐺  ∖  { 0 } ) ( vol* ‘ ( ( ◡ 𝐹  “  { ( 𝑦  /  𝑧 ) } )  ∩  ( ◡ 𝐺  “  { 𝑧 } ) ) ) )  →  ( vol* ‘ ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } ) )  ∈  ℝ ) | 
						
							| 96 | 70 85 94 95 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  ( vol* ‘ ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } ) )  ∈  ℝ ) | 
						
							| 97 | 68 96 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ran  ( 𝐹  ∘f   ·  𝐺 )  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ ( 𝐹  ∘f   ·  𝐺 )  “  { 𝑦 } ) )  ∈  ℝ ) | 
						
							| 98 | 12 45 66 97 | i1fd | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  dom  ∫1 ) |