Step |
Hyp |
Ref |
Expression |
1 |
|
i1fmulc.2 |
⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) |
2 |
|
i1fmulc.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
reex |
⊢ ℝ ∈ V |
4 |
3
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
5 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
7 |
6
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
8 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
9 |
4 2 7 8
|
ofc1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) |
10 |
9
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) |
11 |
10
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = 𝐵 ↔ ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) = 𝐵 ) ) |
12 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐵 / 𝐴 ) ↔ ( 𝐵 / 𝐴 ) = ( 𝐹 ‘ 𝑧 ) ) |
13 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
14 |
13
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
15 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
16 |
15
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
17 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
18 |
17
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
19 |
18
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
20 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → 𝐴 ≠ 0 ) |
21 |
14 16 19 20
|
divmuld |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐵 / 𝐴 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) = 𝐵 ) ) |
22 |
12 21
|
syl5bb |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐵 / 𝐴 ) ↔ ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) = 𝐵 ) ) |
23 |
11 22
|
bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = 𝐵 ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝐵 / 𝐴 ) ) ) |
24 |
23
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( ( 𝑧 ∈ ℝ ∧ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = 𝐵 ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐵 / 𝐴 ) ) ) ) |
25 |
|
remulcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
27 |
|
fconstg |
⊢ ( 𝐴 ∈ ℝ → ( ℝ × { 𝐴 } ) : ℝ ⟶ { 𝐴 } ) |
28 |
2 27
|
syl |
⊢ ( 𝜑 → ( ℝ × { 𝐴 } ) : ℝ ⟶ { 𝐴 } ) |
29 |
2
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ℝ ) |
30 |
28 29
|
fssd |
⊢ ( 𝜑 → ( ℝ × { 𝐴 } ) : ℝ ⟶ ℝ ) |
31 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
32 |
26 30 6 4 4 31
|
off |
⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ℝ ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ℝ ) |
34 |
33
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) Fn ℝ ) |
35 |
|
fniniseg |
⊢ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) Fn ℝ → ( 𝑧 ∈ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝐵 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = 𝐵 ) ) ) |
36 |
34 35
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝐵 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = 𝐵 ) ) ) |
37 |
17
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 𝐹 Fn ℝ ) |
38 |
|
fniniseg |
⊢ ( 𝐹 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐵 / 𝐴 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐵 / 𝐴 ) ) ) ) |
39 |
37 38
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐵 / 𝐴 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐵 / 𝐴 ) ) ) ) |
40 |
24 36 39
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝐵 } ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐵 / 𝐴 ) } ) ) ) |
41 |
40
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝐵 } ) = ( ◡ 𝐹 “ { ( 𝐵 / 𝐴 ) } ) ) |