Step |
Hyp |
Ref |
Expression |
1 |
|
i1fadd.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) |
2 |
|
i1fadd.2 |
⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) |
3 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
5 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
6 |
|
i1ff |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
8 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
9 |
|
reex |
⊢ ℝ ∈ V |
10 |
9
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
11 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
12 |
5 8 10 10 11
|
offn |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) Fn ℝ ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐹 ∘f · 𝐺 ) Fn ℝ ) |
14 |
|
fniniseg |
⊢ ( ( 𝐹 ∘f · 𝐺 ) Fn ℝ → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝐴 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝐴 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
16 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → 𝐹 Fn ℝ ) |
17 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → 𝐺 Fn ℝ ) |
18 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ℝ ∈ V ) |
19 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
20 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
21 |
16 17 18 18 11 19 20
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) |
22 |
21
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑧 ) = 𝐴 ↔ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) |
23 |
22
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) ) |
24 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝐺 Fn ℝ ) |
25 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝑧 ∈ ℝ ) |
26 |
|
fnfvelrn |
⊢ ( ( 𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ) |
27 |
24 25 26
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ) |
28 |
|
eldifsni |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → 𝐴 ≠ 0 ) |
29 |
28
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝐴 ≠ 0 ) |
30 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) |
31 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
32 |
31 25
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
33 |
32
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
34 |
33
|
mul01d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) · 0 ) = 0 ) |
35 |
29 30 34
|
3netr4d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ≠ ( ( 𝐹 ‘ 𝑧 ) · 0 ) ) |
36 |
|
oveq2 |
⊢ ( ( 𝐺 ‘ 𝑧 ) = 0 → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) · 0 ) ) |
37 |
36
|
necon3i |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ≠ ( ( 𝐹 ‘ 𝑧 ) · 0 ) → ( 𝐺 ‘ 𝑧 ) ≠ 0 ) |
38 |
35 37
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ≠ 0 ) |
39 |
|
eldifsn |
⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ( ran 𝐺 ∖ { 0 } ) ↔ ( ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ∧ ( 𝐺 ‘ 𝑧 ) ≠ 0 ) ) |
40 |
27 38 39
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ( ran 𝐺 ∖ { 0 } ) ) |
41 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝐺 : ℝ ⟶ ℝ ) |
42 |
41 25
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℝ ) |
43 |
42
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
44 |
33 43 38
|
divcan4d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) / ( 𝐺 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
45 |
30
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) / ( 𝐺 ‘ 𝑧 ) ) = ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) ) |
46 |
44 45
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) ) |
47 |
31
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝐹 Fn ℝ ) |
48 |
|
fniniseg |
⊢ ( 𝐹 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
49 |
47 48
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
50 |
25 46 49
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ) |
51 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
52 |
|
fniniseg |
⊢ ( 𝐺 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
53 |
24 52
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
54 |
25 51 53
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝑧 ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) |
55 |
50 54
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) |
56 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝐴 / 𝑦 ) = ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) ) |
57 |
56
|
sneqd |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → { ( 𝐴 / 𝑦 ) } = { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) |
58 |
57
|
imaeq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) = ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ) |
59 |
|
sneq |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → { 𝑦 } = { ( 𝐺 ‘ 𝑧 ) } ) |
60 |
59
|
imaeq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ◡ 𝐺 “ { 𝑦 } ) = ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) |
61 |
58 60
|
ineq12d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) = ( ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) |
62 |
61
|
eleq2d |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) ) |
63 |
62
|
rspcev |
⊢ ( ( ( 𝐺 ‘ 𝑧 ) ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) → ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
64 |
40 55 63
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
65 |
64
|
ex |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) → ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
66 |
|
fniniseg |
⊢ ( 𝐹 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ) ) ) |
67 |
16 66
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ) ) ) |
68 |
|
fniniseg |
⊢ ( 𝐺 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) |
69 |
17 68
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) |
70 |
67 69
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∧ 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ( ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
71 |
|
elin |
⊢ ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∧ 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
72 |
|
anandi |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ↔ ( ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) |
73 |
70 71 72
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
74 |
73
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
75 |
|
eldifi |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → 𝐴 ∈ ℂ ) |
76 |
75
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝐴 ∈ ℂ ) |
77 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝐺 : ℝ ⟶ ℝ ) |
78 |
77
|
frnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → ran 𝐺 ⊆ ℝ ) |
79 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) |
80 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ↔ ( 𝑦 ∈ ran 𝐺 ∧ 𝑦 ≠ 0 ) ) |
81 |
79 80
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → ( 𝑦 ∈ ran 𝐺 ∧ 𝑦 ≠ 0 ) ) |
82 |
81
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝑦 ∈ ran 𝐺 ) |
83 |
78 82
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝑦 ∈ ℝ ) |
84 |
83
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝑦 ∈ ℂ ) |
85 |
81
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝑦 ≠ 0 ) |
86 |
76 84 85
|
divcan1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → ( ( 𝐴 / 𝑦 ) · 𝑦 ) = 𝐴 ) |
87 |
|
oveq12 |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = ( ( 𝐴 / 𝑦 ) · 𝑦 ) ) |
88 |
87
|
eqeq1d |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ↔ ( ( 𝐴 / 𝑦 ) · 𝑦 ) = 𝐴 ) ) |
89 |
86 88
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) |
90 |
89
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) |
91 |
90
|
imdistanda |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) ) |
92 |
74 91
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) ) |
93 |
92
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) ) |
94 |
65 93
|
impbid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ↔ ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
95 |
15 23 94
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝐴 } ) ↔ ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
96 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
97 |
95 96
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝐴 } ) ↔ 𝑧 ∈ ∪ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
98 |
97
|
eqrdv |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝐴 } ) = ∪ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |