| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1fpos.1 | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 2 |  | simpr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 3 | 2 | biantrurd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑥  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) ) ) | 
						
							| 4 |  | i1ff | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 5 | 4 | ffvelcdmda | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 6 | 5 | biantrurd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑥  ∈  ℝ )  →  ( 0  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 7 |  | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 8 | 6 7 | bitr4di | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑥  ∈  ℝ )  →  ( 0  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 9 | 4 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑥  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 10 |  | ffn | ⊢ ( 𝐹 : ℝ ⟶ ℝ  →  𝐹  Fn  ℝ ) | 
						
							| 11 |  | elpreima | ⊢ ( 𝐹  Fn  ℝ  →  ( 𝑥  ∈  ( ◡ 𝐹  “  ( 0 [,) +∞ ) )  ↔  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) ) ) | 
						
							| 12 | 9 10 11 | 3syl | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  ∈  ( ◡ 𝐹  “  ( 0 [,) +∞ ) )  ↔  ( 𝑥  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ( 0 [,) +∞ ) ) ) ) | 
						
							| 13 | 3 8 12 | 3bitr4d | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑥  ∈  ℝ )  →  ( 0  ≤  ( 𝐹 ‘ 𝑥 )  ↔  𝑥  ∈  ( ◡ 𝐹  “  ( 0 [,) +∞ ) ) ) ) | 
						
							| 14 | 13 | ifbid | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑥  ∈  ℝ )  →  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  if ( 𝑥  ∈  ( ◡ 𝐹  “  ( 0 [,) +∞ ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 15 | 14 | mpteq2dva | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( 𝑥  ∈  ℝ  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( ◡ 𝐹  “  ( 0 [,) +∞ ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 16 | 1 15 | eqtrid | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐺  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( ◡ 𝐹  “  ( 0 [,) +∞ ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) ) | 
						
							| 17 |  | i1fima | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ◡ 𝐹  “  ( 0 [,) +∞ ) )  ∈  dom  vol ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( ◡ 𝐹  “  ( 0 [,) +∞ ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( ◡ 𝐹  “  ( 0 [,) +∞ ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 19 | 18 | i1fres | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  ( ◡ 𝐹  “  ( 0 [,) +∞ ) )  ∈  dom  vol )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( ◡ 𝐹  “  ( 0 [,) +∞ ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1 ) | 
						
							| 20 | 17 19 | mpdan | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  ( ◡ 𝐹  “  ( 0 [,) +∞ ) ) ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) )  ∈  dom  ∫1 ) | 
						
							| 21 | 16 20 | eqeltrd | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐺  ∈  dom  ∫1 ) |