| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1fposd.1 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  𝐴 )  ∈  dom  ∫1 ) | 
						
							| 2 |  | nfcv | ⊢ Ⅎ 𝑥 0 | 
						
							| 3 |  | nfcv | ⊢ Ⅎ 𝑥  ≤ | 
						
							| 4 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) | 
						
							| 5 | 2 3 4 | nfbr | ⊢ Ⅎ 𝑥 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) | 
						
							| 6 | 5 4 2 | nfif | ⊢ Ⅎ 𝑥 if ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  0 ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑦 if ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 ) ,  0 ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 )  =  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 ) ) | 
						
							| 9 | 8 | breq2d | ⊢ ( 𝑦  =  𝑥  →  ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 )  ↔  0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 ) ) ) | 
						
							| 10 | 9 8 | ifbieq1d | ⊢ ( 𝑦  =  𝑥  →  if ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  0 )  =  if ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 ) ,  0 ) ) | 
						
							| 11 | 6 7 10 | cbvmpt | ⊢ ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 ) ,  0 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 13 |  | i1ff | ⊢ ( ( 𝑥  ∈  ℝ  ↦  𝐴 )  ∈  dom  ∫1  →  ( 𝑥  ∈  ℝ  ↦  𝐴 ) : ℝ ⟶ ℝ ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  𝐴 ) : ℝ ⟶ ℝ ) | 
						
							| 15 | 14 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  𝐴 )  =  ( 𝑥  ∈  ℝ  ↦  𝐴 ) | 
						
							| 17 | 16 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 18 | 12 15 17 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 19 | 18 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 )  ↔  0  ≤  𝐴 ) ) | 
						
							| 20 | 19 18 | ifbieq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 ) ,  0 )  =  if ( 0  ≤  𝐴 ,  𝐴 ,  0 ) ) | 
						
							| 21 | 20 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑥 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 0  ≤  𝐴 ,  𝐴 ,  0 ) ) ) | 
						
							| 22 | 11 21 | eqtrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 0  ≤  𝐴 ,  𝐴 ,  0 ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  0 ) )  =  ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  0 ) ) | 
						
							| 24 | 23 | i1fpos | ⊢ ( ( 𝑥  ∈  ℝ  ↦  𝐴 )  ∈  dom  ∫1  →  ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  0 ) )  ∈  dom  ∫1 ) | 
						
							| 25 | 1 24 | syl | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  ↦  if ( 0  ≤  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  ( ( 𝑥  ∈  ℝ  ↦  𝐴 ) ‘ 𝑦 ) ,  0 ) )  ∈  dom  ∫1 ) | 
						
							| 26 | 22 25 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 0  ≤  𝐴 ,  𝐴 ,  0 ) )  ∈  dom  ∫1 ) |