| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1fres.1 | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝐹 ‘ 𝑥 ) ,  0 ) ) | 
						
							| 2 |  | i1ff | ⊢ ( 𝐹  ∈  dom  ∫1  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 4 | 3 | ffnd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  →  𝐹  Fn  ℝ ) | 
						
							| 5 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ran  𝐹 ) | 
						
							| 6 | 4 5 | sylan | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ran  𝐹 ) | 
						
							| 7 |  | i1f0rn | ⊢ ( 𝐹  ∈  dom  ∫1  →  0  ∈  ran  𝐹 ) | 
						
							| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑥  ∈  ℝ )  →  0  ∈  ran  𝐹 ) | 
						
							| 9 | 6 8 | ifcld | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  ∈  ran  𝐹 ) | 
						
							| 10 | 9 1 | fmptd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  →  𝐺 : ℝ ⟶ ran  𝐹 ) | 
						
							| 11 | 3 | frnd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 12 | 10 11 | fssd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  →  𝐺 : ℝ ⟶ ℝ ) | 
						
							| 13 |  | i1frn | ⊢ ( 𝐹  ∈  dom  ∫1  →  ran  𝐹  ∈  Fin ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  →  ran  𝐹  ∈  Fin ) | 
						
							| 15 | 10 | frnd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  →  ran  𝐺  ⊆  ran  𝐹 ) | 
						
							| 16 | 14 15 | ssfid | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  →  ran  𝐺  ∈  Fin ) | 
						
							| 17 |  | eleq1w | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 19 | 17 18 | ifbieq1d | ⊢ ( 𝑥  =  𝑧  →  if ( 𝑥  ∈  𝐴 ,  ( 𝐹 ‘ 𝑥 ) ,  0 )  =  if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 ) ) | 
						
							| 20 |  | fvex | ⊢ ( 𝐹 ‘ 𝑧 )  ∈  V | 
						
							| 21 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 22 | 20 21 | ifex | ⊢ if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 )  ∈  V | 
						
							| 23 | 19 1 22 | fvmpt | ⊢ ( 𝑧  ∈  ℝ  →  ( 𝐺 ‘ 𝑧 )  =  if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  ∧  𝑧  ∈  ℝ )  →  ( 𝐺 ‘ 𝑧 )  =  if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 ) ) | 
						
							| 25 | 24 | eqeq1d | ⊢ ( ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝐺 ‘ 𝑧 )  =  𝑦  ↔  if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 )  =  𝑦 ) ) | 
						
							| 26 |  | eldifsni | ⊢ ( 𝑦  ∈  ( ran  𝐺  ∖  { 0 } )  →  𝑦  ≠  0 ) | 
						
							| 27 | 26 | ad2antlr | ⊢ ( ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  ∧  𝑧  ∈  ℝ )  →  𝑦  ≠  0 ) | 
						
							| 28 | 27 | necomd | ⊢ ( ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  ∧  𝑧  ∈  ℝ )  →  0  ≠  𝑦 ) | 
						
							| 29 |  | iffalse | ⊢ ( ¬  𝑧  ∈  𝐴  →  if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 )  =  0 ) | 
						
							| 30 | 29 | neeq1d | ⊢ ( ¬  𝑧  ∈  𝐴  →  ( if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 )  ≠  𝑦  ↔  0  ≠  𝑦 ) ) | 
						
							| 31 | 28 30 | syl5ibrcom | ⊢ ( ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  ∧  𝑧  ∈  ℝ )  →  ( ¬  𝑧  ∈  𝐴  →  if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 )  ≠  𝑦 ) ) | 
						
							| 32 | 31 | necon4bd | ⊢ ( ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  ∧  𝑧  ∈  ℝ )  →  ( if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 )  =  𝑦  →  𝑧  ∈  𝐴 ) ) | 
						
							| 33 | 32 | pm4.71rd | ⊢ ( ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  ∧  𝑧  ∈  ℝ )  →  ( if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 )  =  𝑦  ↔  ( 𝑧  ∈  𝐴  ∧  if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 )  =  𝑦 ) ) ) | 
						
							| 34 | 25 33 | bitrd | ⊢ ( ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝐺 ‘ 𝑧 )  =  𝑦  ↔  ( 𝑧  ∈  𝐴  ∧  if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 )  =  𝑦 ) ) ) | 
						
							| 35 |  | iftrue | ⊢ ( 𝑧  ∈  𝐴  →  if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 36 | 35 | eqeq1d | ⊢ ( 𝑧  ∈  𝐴  →  ( if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 )  =  𝑦  ↔  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 37 | 36 | pm5.32i | ⊢ ( ( 𝑧  ∈  𝐴  ∧  if ( 𝑧  ∈  𝐴 ,  ( 𝐹 ‘ 𝑧 ) ,  0 )  =  𝑦 )  ↔  ( 𝑧  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 38 | 34 37 | bitrdi | ⊢ ( ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝐺 ‘ 𝑧 )  =  𝑦  ↔  ( 𝑧  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) ) | 
						
							| 39 | 38 | pm5.32da | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ( 𝑧  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑧 )  =  𝑦 )  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) ) ) | 
						
							| 40 |  | an12 | ⊢ ( ( 𝑧  ∈  ℝ  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ( 𝑧  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) ) | 
						
							| 41 | 39 40 | bitrdi | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ( 𝑧  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑧 )  =  𝑦 )  ↔  ( 𝑧  ∈  𝐴  ∧  ( 𝑧  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) ) ) | 
						
							| 42 | 10 | ffnd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  →  𝐺  Fn  ℝ ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  𝐺  Fn  ℝ ) | 
						
							| 44 |  | fniniseg | ⊢ ( 𝐺  Fn  ℝ  →  ( 𝑧  ∈  ( ◡ 𝐺  “  { 𝑦 } )  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑧 )  =  𝑦 ) ) ) | 
						
							| 45 | 43 44 | syl | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( 𝑧  ∈  ( ◡ 𝐺  “  { 𝑦 } )  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑧 )  =  𝑦 ) ) ) | 
						
							| 46 | 4 | adantr | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  𝐹  Fn  ℝ ) | 
						
							| 47 |  | fniniseg | ⊢ ( 𝐹  Fn  ℝ  →  ( 𝑧  ∈  ( ◡ 𝐹  “  { 𝑦 } )  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( 𝑧  ∈  ( ◡ 𝐹  “  { 𝑦 } )  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) ) | 
						
							| 49 | 48 | anbi2d | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  ( ◡ 𝐹  “  { 𝑦 } ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ( 𝑧  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) ) ) | 
						
							| 50 | 41 45 49 | 3bitr4d | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( 𝑧  ∈  ( ◡ 𝐺  “  { 𝑦 } )  ↔  ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  ( ◡ 𝐹  “  { 𝑦 } ) ) ) ) | 
						
							| 51 |  | elin | ⊢ ( 𝑧  ∈  ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) )  ↔  ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  ( ◡ 𝐹  “  { 𝑦 } ) ) ) | 
						
							| 52 | 50 51 | bitr4di | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( 𝑧  ∈  ( ◡ 𝐺  “  { 𝑦 } )  ↔  𝑧  ∈  ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) ) ) ) | 
						
							| 53 | 52 | eqrdv | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ◡ 𝐺  “  { 𝑦 } )  =  ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) ) ) | 
						
							| 54 |  | simplr | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  𝐴  ∈  dom  vol ) | 
						
							| 55 |  | i1fima | ⊢ ( 𝐹  ∈  dom  ∫1  →  ( ◡ 𝐹  “  { 𝑦 } )  ∈  dom  vol ) | 
						
							| 56 | 55 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ◡ 𝐹  “  { 𝑦 } )  ∈  dom  vol ) | 
						
							| 57 |  | inmbl | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( ◡ 𝐹  “  { 𝑦 } )  ∈  dom  vol )  →  ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) )  ∈  dom  vol ) | 
						
							| 58 | 54 56 57 | syl2anc | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) )  ∈  dom  vol ) | 
						
							| 59 | 53 58 | eqeltrd | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ◡ 𝐺  “  { 𝑦 } )  ∈  dom  vol ) | 
						
							| 60 | 53 | fveq2d | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑦 } ) )  =  ( vol ‘ ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) ) ) ) | 
						
							| 61 |  | mblvol | ⊢ ( ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) )  ∈  dom  vol  →  ( vol ‘ ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) ) )  =  ( vol* ‘ ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) ) ) ) | 
						
							| 62 | 58 61 | syl | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol ‘ ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) ) )  =  ( vol* ‘ ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) ) ) ) | 
						
							| 63 | 60 62 | eqtrd | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑦 } ) )  =  ( vol* ‘ ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) ) ) ) | 
						
							| 64 |  | inss2 | ⊢ ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) )  ⊆  ( ◡ 𝐹  “  { 𝑦 } ) | 
						
							| 65 |  | mblss | ⊢ ( ( ◡ 𝐹  “  { 𝑦 } )  ∈  dom  vol  →  ( ◡ 𝐹  “  { 𝑦 } )  ⊆  ℝ ) | 
						
							| 66 | 56 65 | syl | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( ◡ 𝐹  “  { 𝑦 } )  ⊆  ℝ ) | 
						
							| 67 |  | mblvol | ⊢ ( ( ◡ 𝐹  “  { 𝑦 } )  ∈  dom  vol  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑦 } ) )  =  ( vol* ‘ ( ◡ 𝐹  “  { 𝑦 } ) ) ) | 
						
							| 68 | 56 67 | syl | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑦 } ) )  =  ( vol* ‘ ( ◡ 𝐹  “  { 𝑦 } ) ) ) | 
						
							| 69 |  | i1fima2sn | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑦 } ) )  ∈  ℝ ) | 
						
							| 70 | 69 | adantlr | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐹  “  { 𝑦 } ) )  ∈  ℝ ) | 
						
							| 71 | 68 70 | eqeltrrd | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol* ‘ ( ◡ 𝐹  “  { 𝑦 } ) )  ∈  ℝ ) | 
						
							| 72 |  | ovolsscl | ⊢ ( ( ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) )  ⊆  ( ◡ 𝐹  “  { 𝑦 } )  ∧  ( ◡ 𝐹  “  { 𝑦 } )  ⊆  ℝ  ∧  ( vol* ‘ ( ◡ 𝐹  “  { 𝑦 } ) )  ∈  ℝ )  →  ( vol* ‘ ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) ) )  ∈  ℝ ) | 
						
							| 73 | 64 66 71 72 | mp3an2i | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol* ‘ ( 𝐴  ∩  ( ◡ 𝐹  “  { 𝑦 } ) ) )  ∈  ℝ ) | 
						
							| 74 | 63 73 | eqeltrd | ⊢ ( ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  ∧  𝑦  ∈  ( ran  𝐺  ∖  { 0 } ) )  →  ( vol ‘ ( ◡ 𝐺  “  { 𝑦 } ) )  ∈  ℝ ) | 
						
							| 75 | 12 16 59 74 | i1fd | ⊢ ( ( 𝐹  ∈  dom  ∫1  ∧  𝐴  ∈  dom  vol )  →  𝐺  ∈  dom  ∫1 ) |