Step |
Hyp |
Ref |
Expression |
1 |
|
i1fres.1 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
2 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
3 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐹 : ℝ ⟶ ℝ ) |
4 |
3
|
ffnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐹 Fn ℝ ) |
5 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
6 |
4 5
|
sylan |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
7 |
|
i1f0rn |
⊢ ( 𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹 ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ran 𝐹 ) |
9 |
6 8
|
ifcld |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ran 𝐹 ) |
10 |
9 1
|
fmptd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐺 : ℝ ⟶ ran 𝐹 ) |
11 |
3
|
frnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ran 𝐹 ⊆ ℝ ) |
12 |
10 11
|
fssd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐺 : ℝ ⟶ ℝ ) |
13 |
|
i1frn |
⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) |
14 |
13
|
adantr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ran 𝐹 ∈ Fin ) |
15 |
10
|
frnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ran 𝐺 ⊆ ran 𝐹 ) |
16 |
14 15
|
ssfid |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → ran 𝐺 ∈ Fin ) |
17 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
19 |
17 18
|
ifbieq1d |
⊢ ( 𝑥 = 𝑧 → if ( 𝑥 ∈ 𝐴 , ( 𝐹 ‘ 𝑥 ) , 0 ) = if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ) |
20 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑧 ) ∈ V |
21 |
|
c0ex |
⊢ 0 ∈ V |
22 |
20 21
|
ifex |
⊢ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ∈ V |
23 |
19 1 22
|
fvmpt |
⊢ ( 𝑧 ∈ ℝ → ( 𝐺 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ) |
24 |
23
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝐺 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ) |
25 |
24
|
eqeq1d |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑧 ) = 𝑦 ↔ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ) ) |
26 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) → 𝑦 ≠ 0 ) |
27 |
26
|
ad2antlr |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → 𝑦 ≠ 0 ) |
28 |
27
|
necomd |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → 0 ≠ 𝑦 ) |
29 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ 𝐴 → if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 0 ) |
30 |
29
|
neeq1d |
⊢ ( ¬ 𝑧 ∈ 𝐴 → ( if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ≠ 𝑦 ↔ 0 ≠ 𝑦 ) ) |
31 |
28 30
|
syl5ibrcom |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ¬ 𝑧 ∈ 𝐴 → if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) ≠ 𝑦 ) ) |
32 |
31
|
necon4bd |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 → 𝑧 ∈ 𝐴 ) ) |
33 |
32
|
pm4.71rd |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ↔ ( 𝑧 ∈ 𝐴 ∧ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ) ) ) |
34 |
25 33
|
bitrd |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑧 ) = 𝑦 ↔ ( 𝑧 ∈ 𝐴 ∧ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ) ) ) |
35 |
|
iftrue |
⊢ ( 𝑧 ∈ 𝐴 → if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = ( 𝐹 ‘ 𝑧 ) ) |
36 |
35
|
eqeq1d |
⊢ ( 𝑧 ∈ 𝐴 → ( if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
37 |
36
|
pm5.32i |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ if ( 𝑧 ∈ 𝐴 , ( 𝐹 ‘ 𝑧 ) , 0 ) = 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
38 |
34 37
|
bitrdi |
⊢ ( ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑧 ) = 𝑦 ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) |
39 |
38
|
pm5.32da |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
40 |
|
an12 |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) |
41 |
39 40
|
bitrdi |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
42 |
10
|
ffnd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐺 Fn ℝ ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → 𝐺 Fn ℝ ) |
44 |
|
fniniseg |
⊢ ( 𝐺 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) |
45 |
43 44
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) |
46 |
4
|
adantr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → 𝐹 Fn ℝ ) |
47 |
|
fniniseg |
⊢ ( 𝐹 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) |
48 |
46 47
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) |
49 |
48
|
anbi2d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
50 |
41 45 49
|
3bitr4d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
51 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ) ) |
52 |
50 51
|
bitr4di |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ 𝑧 ∈ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
53 |
52
|
eqrdv |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑦 } ) = ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) |
54 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → 𝐴 ∈ dom vol ) |
55 |
|
i1fima |
⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) |
56 |
55
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) |
57 |
|
inmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol ) → ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ dom vol ) |
58 |
54 56 57
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ dom vol ) |
59 |
53 58
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑦 } ) ∈ dom vol ) |
60 |
53
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑦 } ) ) = ( vol ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
61 |
|
mblvol |
⊢ ( ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
62 |
58 61
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
63 |
60 62
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑦 } ) ) = ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ) |
64 |
|
inss2 |
⊢ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑦 } ) |
65 |
|
mblss |
⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol → ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ℝ ) |
66 |
56 65
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ℝ ) |
67 |
|
mblvol |
⊢ ( ( ◡ 𝐹 “ { 𝑦 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ) |
68 |
56 67
|
syl |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ) |
69 |
|
i1fima2sn |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
70 |
69
|
adantlr |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
71 |
68 70
|
eqeltrrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) |
72 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑦 } ) ∧ ( ◡ 𝐹 “ { 𝑦 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { 𝑦 } ) ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ∈ ℝ ) |
73 |
64 66 71 72
|
mp3an2i |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol* ‘ ( 𝐴 ∩ ( ◡ 𝐹 “ { 𝑦 } ) ) ) ∈ ℝ ) |
74 |
63 73
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑦 } ) ) ∈ ℝ ) |
75 |
12 16 59 74
|
i1fd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ dom vol ) → 𝐺 ∈ dom ∫1 ) |