Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
⊢ ℝ ∈ V |
2 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
3 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
4 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : ℝ ⟶ ℂ ) |
5 |
2 3 4
|
sylancl |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℂ ) |
6 |
|
i1ff |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) |
7 |
|
fss |
⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐺 : ℝ ⟶ ℂ ) |
8 |
6 3 7
|
sylancl |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℂ ) |
9 |
|
ofnegsub |
⊢ ( ( ℝ ∈ V ∧ 𝐹 : ℝ ⟶ ℂ ∧ 𝐺 : ℝ ⟶ ℂ ) → ( 𝐹 ∘f + ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹 ∘f − 𝐺 ) ) |
10 |
1 5 8 9
|
mp3an3an |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘f + ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹 ∘f − 𝐺 ) ) |
11 |
|
simpl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐹 ∈ dom ∫1 ) |
12 |
|
simpr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐺 ∈ dom ∫1 ) |
13 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
14 |
13
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → - 1 ∈ ℝ ) |
15 |
12 14
|
i1fmulc |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ∈ dom ∫1 ) |
16 |
11 15
|
i1fadd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘f + ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) ∈ dom ∫1 ) |
17 |
10 16
|
eqeltrrd |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘f − 𝐺 ) ∈ dom ∫1 ) |