Metamath Proof Explorer


Theorem i2

Description: _i squared. (Contributed by NM, 6-May-1999)

Ref Expression
Assertion i2 ( i ↑ 2 ) = - 1

Proof

Step Hyp Ref Expression
1 ax-icn i ∈ ℂ
2 1 sqvali ( i ↑ 2 ) = ( i · i )
3 ixi ( i · i ) = - 1
4 2 3 eqtri ( i ↑ 2 ) = - 1