Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
i2
Next ⟩
i3
Metamath Proof Explorer
Ascii
Structured
Theorem
i2
Description:
_i
squared.
(Contributed by
NM
, 6-May-1999)
Ref
Expression
Assertion
i2
⊢
( i ↑ 2 ) = - 1
Proof
Step
Hyp
Ref
Expression
1
ax-icn
⊢
i ∈ ℂ
2
1
sqvali
⊢
( i ↑ 2 ) = ( i · i )
3
ixi
⊢
( i · i ) = - 1
4
2
3
eqtri
⊢
( i ↑ 2 ) = - 1