Metamath Proof Explorer


Theorem i3

Description: _i cubed. (Contributed by NM, 31-Jan-2007)

Ref Expression
Assertion i3 ( i ↑ 3 ) = - i

Proof

Step Hyp Ref Expression
1 df-3 3 = ( 2 + 1 )
2 1 oveq2i ( i ↑ 3 ) = ( i ↑ ( 2 + 1 ) )
3 ax-icn i ∈ ℂ
4 2nn0 2 ∈ ℕ0
5 expp1 ( ( i ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( i ↑ ( 2 + 1 ) ) = ( ( i ↑ 2 ) · i ) )
6 3 4 5 mp2an ( i ↑ ( 2 + 1 ) ) = ( ( i ↑ 2 ) · i )
7 i2 ( i ↑ 2 ) = - 1
8 7 oveq1i ( ( i ↑ 2 ) · i ) = ( - 1 · i )
9 3 mulm1i ( - 1 · i ) = - i
10 8 9 eqtri ( ( i ↑ 2 ) · i ) = - i
11 6 10 eqtri ( i ↑ ( 2 + 1 ) ) = - i
12 2 11 eqtri ( i ↑ 3 ) = - i