Metamath Proof Explorer


Theorem i4

Description: _i to the fourth power. (Contributed by NM, 31-Jan-2007)

Ref Expression
Assertion i4 ( i ↑ 4 ) = 1

Proof

Step Hyp Ref Expression
1 ax-icn i ∈ ℂ
2 2nn0 2 ∈ ℕ0
3 expadd ( ( i ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( i ↑ ( 2 + 2 ) ) = ( ( i ↑ 2 ) · ( i ↑ 2 ) ) )
4 1 2 2 3 mp3an ( i ↑ ( 2 + 2 ) ) = ( ( i ↑ 2 ) · ( i ↑ 2 ) )
5 2p2e4 ( 2 + 2 ) = 4
6 5 oveq2i ( i ↑ ( 2 + 2 ) ) = ( i ↑ 4 )
7 i2 ( i ↑ 2 ) = - 1
8 7 7 oveq12i ( ( i ↑ 2 ) · ( i ↑ 2 ) ) = ( - 1 · - 1 )
9 ax-1cn 1 ∈ ℂ
10 9 9 mul2negi ( - 1 · - 1 ) = ( 1 · 1 )
11 1t1e1 ( 1 · 1 ) = 1
12 8 10 11 3eqtri ( ( i ↑ 2 ) · ( i ↑ 2 ) ) = 1
13 4 6 12 3eqtr3i ( i ↑ 4 ) = 1