| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
⊢ i ∈ ℂ |
| 2 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 3 |
|
expadd |
⊢ ( ( i ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( i ↑ ( 2 + 2 ) ) = ( ( i ↑ 2 ) · ( i ↑ 2 ) ) ) |
| 4 |
1 2 2 3
|
mp3an |
⊢ ( i ↑ ( 2 + 2 ) ) = ( ( i ↑ 2 ) · ( i ↑ 2 ) ) |
| 5 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
| 6 |
5
|
oveq2i |
⊢ ( i ↑ ( 2 + 2 ) ) = ( i ↑ 4 ) |
| 7 |
|
i2 |
⊢ ( i ↑ 2 ) = - 1 |
| 8 |
7 7
|
oveq12i |
⊢ ( ( i ↑ 2 ) · ( i ↑ 2 ) ) = ( - 1 · - 1 ) |
| 9 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 10 |
9 9
|
mul2negi |
⊢ ( - 1 · - 1 ) = ( 1 · 1 ) |
| 11 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
| 12 |
8 10 11
|
3eqtri |
⊢ ( ( i ↑ 2 ) · ( i ↑ 2 ) ) = 1 |
| 13 |
4 6 12
|
3eqtr3i |
⊢ ( i ↑ 4 ) = 1 |