| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 2 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 3 | 2 | a1i | ⊢ ( ⊤  →  ℂ  ∈  V ) | 
						
							| 4 |  | sqcl | ⊢ ( 𝑧  ∈  ℂ  →  ( 𝑧 ↑ 2 )  ∈  ℂ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ⊤  ∧  𝑧  ∈  ℂ )  →  ( 𝑧 ↑ 2 )  ∈  ℂ ) | 
						
							| 6 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 7 | 6 | a1i | ⊢ ( ( ⊤  ∧  𝑧  ∈  ℂ )  →  1  ∈  ℂ ) | 
						
							| 8 |  | eqidd | ⊢ ( ⊤  →  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 2 ) )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 2 ) ) ) | 
						
							| 9 |  | fconstmpt | ⊢ ( ℂ  ×  { 1 } )  =  ( 𝑧  ∈  ℂ  ↦  1 ) | 
						
							| 10 | 9 | a1i | ⊢ ( ⊤  →  ( ℂ  ×  { 1 } )  =  ( 𝑧  ∈  ℂ  ↦  1 ) ) | 
						
							| 11 | 3 5 7 8 10 | offval2 | ⊢ ( ⊤  →  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 2 ) )  ∘f   +  ( ℂ  ×  { 1 } ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) ) ) | 
						
							| 12 |  | zsscn | ⊢ ℤ  ⊆  ℂ | 
						
							| 13 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 14 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 15 |  | plypow | ⊢ ( ( ℤ  ⊆  ℂ  ∧  1  ∈  ℤ  ∧  2  ∈  ℕ0 )  →  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 2 ) )  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 16 | 12 13 14 15 | mp3an | ⊢ ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 2 ) )  ∈  ( Poly ‘ ℤ ) | 
						
							| 17 | 16 | a1i | ⊢ ( ⊤  →  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 2 ) )  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 18 |  | plyconst | ⊢ ( ( ℤ  ⊆  ℂ  ∧  1  ∈  ℤ )  →  ( ℂ  ×  { 1 } )  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 19 | 12 13 18 | mp2an | ⊢ ( ℂ  ×  { 1 } )  ∈  ( Poly ‘ ℤ ) | 
						
							| 20 | 19 | a1i | ⊢ ( ⊤  →  ( ℂ  ×  { 1 } )  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 21 |  | zaddcl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑥  +  𝑦 )  ∈  ℤ ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑥  +  𝑦 )  ∈  ℤ ) | 
						
							| 23 | 17 20 22 | plyadd | ⊢ ( ⊤  →  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 2 ) )  ∘f   +  ( ℂ  ×  { 1 } ) )  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 24 | 11 23 | eqeltrrd | ⊢ ( ⊤  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) )  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 25 | 24 | mptru | ⊢ ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) )  ∈  ( Poly ‘ ℤ ) | 
						
							| 26 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 27 |  | sq0i | ⊢ ( 𝑧  =  0  →  ( 𝑧 ↑ 2 )  =  0 ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( 𝑧  =  0  →  ( ( 𝑧 ↑ 2 )  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 29 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 30 | 28 29 | eqtrdi | ⊢ ( 𝑧  =  0  →  ( ( 𝑧 ↑ 2 )  +  1 )  =  1 ) | 
						
							| 31 |  | eqid | ⊢ ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) ) | 
						
							| 32 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 33 | 30 31 32 | fvmpt | ⊢ ( 0  ∈  ℂ  →  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) ) ‘ 0 )  =  1 ) | 
						
							| 34 | 26 33 | ax-mp | ⊢ ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) ) ‘ 0 )  =  1 | 
						
							| 35 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 36 | 34 35 | eqnetri | ⊢ ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) ) ‘ 0 )  ≠  0 | 
						
							| 37 |  | ne0p | ⊢ ( ( 0  ∈  ℂ  ∧  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) ) ‘ 0 )  ≠  0 )  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) )  ≠  0𝑝 ) | 
						
							| 38 | 26 36 37 | mp2an | ⊢ ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) )  ≠  0𝑝 | 
						
							| 39 |  | eldifsn | ⊢ ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) )  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ↔  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) )  ∈  ( Poly ‘ ℤ )  ∧  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) )  ≠  0𝑝 ) ) | 
						
							| 40 | 25 38 39 | mpbir2an | ⊢ ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) )  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) | 
						
							| 41 |  | oveq1 | ⊢ ( 𝑧  =  i  →  ( 𝑧 ↑ 2 )  =  ( i ↑ 2 ) ) | 
						
							| 42 |  | i2 | ⊢ ( i ↑ 2 )  =  - 1 | 
						
							| 43 | 41 42 | eqtrdi | ⊢ ( 𝑧  =  i  →  ( 𝑧 ↑ 2 )  =  - 1 ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( 𝑧  =  i  →  ( ( 𝑧 ↑ 2 )  +  1 )  =  ( - 1  +  1 ) ) | 
						
							| 45 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 46 |  | 1pneg1e0 | ⊢ ( 1  +  - 1 )  =  0 | 
						
							| 47 | 6 45 46 | addcomli | ⊢ ( - 1  +  1 )  =  0 | 
						
							| 48 | 44 47 | eqtrdi | ⊢ ( 𝑧  =  i  →  ( ( 𝑧 ↑ 2 )  +  1 )  =  0 ) | 
						
							| 49 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 50 | 48 31 49 | fvmpt | ⊢ ( i  ∈  ℂ  →  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) ) ‘ i )  =  0 ) | 
						
							| 51 | 1 50 | ax-mp | ⊢ ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) ) ‘ i )  =  0 | 
						
							| 52 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) )  →  ( 𝑓 ‘ i )  =  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) ) ‘ i ) ) | 
						
							| 53 | 52 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) )  →  ( ( 𝑓 ‘ i )  =  0  ↔  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) ) ‘ i )  =  0 ) ) | 
						
							| 54 | 53 | rspcev | ⊢ ( ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) )  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } )  ∧  ( ( 𝑧  ∈  ℂ  ↦  ( ( 𝑧 ↑ 2 )  +  1 ) ) ‘ i )  =  0 )  →  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ i )  =  0 ) | 
						
							| 55 | 40 51 54 | mp2an | ⊢ ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ i )  =  0 | 
						
							| 56 |  | elaa | ⊢ ( i  ∈  𝔸  ↔  ( i  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( ( Poly ‘ ℤ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ i )  =  0 ) ) | 
						
							| 57 | 1 55 56 | mpbir2an | ⊢ i  ∈  𝔸 |