Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
⊢ i ∈ ℂ |
2 |
|
cnex |
⊢ ℂ ∈ V |
3 |
2
|
a1i |
⊢ ( ⊤ → ℂ ∈ V ) |
4 |
|
sqcl |
⊢ ( 𝑧 ∈ ℂ → ( 𝑧 ↑ 2 ) ∈ ℂ ) |
5 |
4
|
adantl |
⊢ ( ( ⊤ ∧ 𝑧 ∈ ℂ ) → ( 𝑧 ↑ 2 ) ∈ ℂ ) |
6 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
7 |
6
|
a1i |
⊢ ( ( ⊤ ∧ 𝑧 ∈ ℂ ) → 1 ∈ ℂ ) |
8 |
|
eqidd |
⊢ ( ⊤ → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 2 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 2 ) ) ) |
9 |
|
fconstmpt |
⊢ ( ℂ × { 1 } ) = ( 𝑧 ∈ ℂ ↦ 1 ) |
10 |
9
|
a1i |
⊢ ( ⊤ → ( ℂ × { 1 } ) = ( 𝑧 ∈ ℂ ↦ 1 ) ) |
11 |
3 5 7 8 10
|
offval2 |
⊢ ( ⊤ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 2 ) ) ∘f + ( ℂ × { 1 } ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ) |
12 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
13 |
|
1z |
⊢ 1 ∈ ℤ |
14 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
15 |
|
plypow |
⊢ ( ( ℤ ⊆ ℂ ∧ 1 ∈ ℤ ∧ 2 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 2 ) ) ∈ ( Poly ‘ ℤ ) ) |
16 |
12 13 14 15
|
mp3an |
⊢ ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 2 ) ) ∈ ( Poly ‘ ℤ ) |
17 |
16
|
a1i |
⊢ ( ⊤ → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 2 ) ) ∈ ( Poly ‘ ℤ ) ) |
18 |
|
plyconst |
⊢ ( ( ℤ ⊆ ℂ ∧ 1 ∈ ℤ ) → ( ℂ × { 1 } ) ∈ ( Poly ‘ ℤ ) ) |
19 |
12 13 18
|
mp2an |
⊢ ( ℂ × { 1 } ) ∈ ( Poly ‘ ℤ ) |
20 |
19
|
a1i |
⊢ ( ⊤ → ( ℂ × { 1 } ) ∈ ( Poly ‘ ℤ ) ) |
21 |
|
zaddcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 + 𝑦 ) ∈ ℤ ) |
22 |
21
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 + 𝑦 ) ∈ ℤ ) |
23 |
17 20 22
|
plyadd |
⊢ ( ⊤ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 2 ) ) ∘f + ( ℂ × { 1 } ) ) ∈ ( Poly ‘ ℤ ) ) |
24 |
11 23
|
eqeltrrd |
⊢ ( ⊤ → ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ∈ ( Poly ‘ ℤ ) ) |
25 |
24
|
mptru |
⊢ ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ∈ ( Poly ‘ ℤ ) |
26 |
|
0cn |
⊢ 0 ∈ ℂ |
27 |
|
sq0i |
⊢ ( 𝑧 = 0 → ( 𝑧 ↑ 2 ) = 0 ) |
28 |
27
|
oveq1d |
⊢ ( 𝑧 = 0 → ( ( 𝑧 ↑ 2 ) + 1 ) = ( 0 + 1 ) ) |
29 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
30 |
28 29
|
eqtrdi |
⊢ ( 𝑧 = 0 → ( ( 𝑧 ↑ 2 ) + 1 ) = 1 ) |
31 |
|
eqid |
⊢ ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) |
32 |
|
1ex |
⊢ 1 ∈ V |
33 |
30 31 32
|
fvmpt |
⊢ ( 0 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ‘ 0 ) = 1 ) |
34 |
26 33
|
ax-mp |
⊢ ( ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ‘ 0 ) = 1 |
35 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
36 |
34 35
|
eqnetri |
⊢ ( ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ‘ 0 ) ≠ 0 |
37 |
|
ne0p |
⊢ ( ( 0 ∈ ℂ ∧ ( ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ‘ 0 ) ≠ 0 ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ≠ 0𝑝 ) |
38 |
26 36 37
|
mp2an |
⊢ ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ≠ 0𝑝 |
39 |
|
eldifsn |
⊢ ( ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ↔ ( ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ∈ ( Poly ‘ ℤ ) ∧ ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ≠ 0𝑝 ) ) |
40 |
25 38 39
|
mpbir2an |
⊢ ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) |
41 |
|
oveq1 |
⊢ ( 𝑧 = i → ( 𝑧 ↑ 2 ) = ( i ↑ 2 ) ) |
42 |
|
i2 |
⊢ ( i ↑ 2 ) = - 1 |
43 |
41 42
|
eqtrdi |
⊢ ( 𝑧 = i → ( 𝑧 ↑ 2 ) = - 1 ) |
44 |
43
|
oveq1d |
⊢ ( 𝑧 = i → ( ( 𝑧 ↑ 2 ) + 1 ) = ( - 1 + 1 ) ) |
45 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
46 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
47 |
6 45 46
|
addcomli |
⊢ ( - 1 + 1 ) = 0 |
48 |
44 47
|
eqtrdi |
⊢ ( 𝑧 = i → ( ( 𝑧 ↑ 2 ) + 1 ) = 0 ) |
49 |
|
c0ex |
⊢ 0 ∈ V |
50 |
48 31 49
|
fvmpt |
⊢ ( i ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ‘ i ) = 0 ) |
51 |
1 50
|
ax-mp |
⊢ ( ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ‘ i ) = 0 |
52 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) → ( 𝑓 ‘ i ) = ( ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ‘ i ) ) |
53 |
52
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) → ( ( 𝑓 ‘ i ) = 0 ↔ ( ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ‘ i ) = 0 ) ) |
54 |
53
|
rspcev |
⊢ ( ( ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ∧ ( ( 𝑧 ∈ ℂ ↦ ( ( 𝑧 ↑ 2 ) + 1 ) ) ‘ i ) = 0 ) → ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ i ) = 0 ) |
55 |
40 51 54
|
mp2an |
⊢ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ i ) = 0 |
56 |
|
elaa |
⊢ ( i ∈ 𝔸 ↔ ( i ∈ ℂ ∧ ∃ 𝑓 ∈ ( ( Poly ‘ ℤ ) ∖ { 0𝑝 } ) ( 𝑓 ‘ i ) = 0 ) ) |
57 |
1 55 56
|
mpbir2an |
⊢ i ∈ 𝔸 |