Description: Introduction of antecedent as conjunct. Theorem *4.73 of WhiteheadRussell p. 121. (Contributed by NM, 30-Mar-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iba | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜓 ∧ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.21 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜓 ∧ 𝜑 ) ) ) | |
| 2 | simpl | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜓 ) | |
| 3 | 1 2 | impbid1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜓 ∧ 𝜑 ) ) ) |