Description: Introduction of antecedent as conjunct. Theorem *4.73 of WhiteheadRussell p. 121. (Contributed by NM, 30-Mar-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | iba | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜓 ∧ 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.21 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜓 ∧ 𝜑 ) ) ) | |
2 | simpl | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜓 ) | |
3 | 1 2 | impbid1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜓 ∧ 𝜑 ) ) ) |