Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
⊢ 0 ∈ ℂ |
2 |
|
mbfconst |
⊢ ( ( 𝐴 ∈ dom vol ∧ 0 ∈ ℂ ) → ( 𝐴 × { 0 } ) ∈ MblFn ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ dom vol → ( 𝐴 × { 0 } ) ∈ MblFn ) |
4 |
|
ax-icn |
⊢ i ∈ ℂ |
5 |
|
ine0 |
⊢ i ≠ 0 |
6 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℤ ) |
7 |
6
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑘 ∈ ℤ ) |
8 |
|
expclz |
⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
9 |
|
expne0i |
⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ≠ 0 ) |
10 |
8 9
|
div0d |
⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( 0 / ( i ↑ 𝑘 ) ) = 0 ) |
11 |
4 5 7 10
|
mp3an12i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 0 / ( i ↑ 𝑘 ) ) = 0 ) |
12 |
11
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ 0 ) ) |
13 |
|
re0 |
⊢ ( ℜ ‘ 0 ) = 0 |
14 |
12 13
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) = 0 ) |
15 |
14
|
itgvallem3 |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = 0 ) |
16 |
|
0re |
⊢ 0 ∈ ℝ |
17 |
15 16
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
18 |
17
|
ralrimiva |
⊢ ( 𝐴 ∈ dom vol → ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
19 |
|
eqidd |
⊢ ( 𝐴 ∈ dom vol → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
20 |
|
eqidd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) |
21 |
|
c0ex |
⊢ 0 ∈ V |
22 |
21
|
fconst |
⊢ ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } |
23 |
|
fdm |
⊢ ( ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } → dom ( 𝐴 × { 0 } ) = 𝐴 ) |
24 |
22 23
|
mp1i |
⊢ ( 𝐴 ∈ dom vol → dom ( 𝐴 × { 0 } ) = 𝐴 ) |
25 |
21
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
26 |
25
|
adantl |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
27 |
19 20 24 26
|
isibl |
⊢ ( 𝐴 ∈ dom vol → ( ( 𝐴 × { 0 } ) ∈ 𝐿1 ↔ ( ( 𝐴 × { 0 } ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
28 |
3 18 27
|
mpbir2and |
⊢ ( 𝐴 ∈ dom vol → ( 𝐴 × { 0 } ) ∈ 𝐿1 ) |