| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iblabs.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | iblabs.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 3 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 4 | 3 | a1i | ⊢ ( 𝜑  →  abs : ℂ ⟶ ℝ ) | 
						
							| 5 |  | iblmbf | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 7 | 6 1 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 8 | 4 7 | cofmpt | ⊢ ( 𝜑  →  ( abs  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐵 ) ) ) | 
						
							| 9 | 7 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℂ ) | 
						
							| 10 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 11 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 12 |  | cncfss | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ℂ –cn→ ℝ )  ⊆  ( ℂ –cn→ ℂ ) ) | 
						
							| 13 | 10 11 12 | mp2an | ⊢ ( ℂ –cn→ ℝ )  ⊆  ( ℂ –cn→ ℂ ) | 
						
							| 14 |  | abscncf | ⊢ abs  ∈  ( ℂ –cn→ ℝ ) | 
						
							| 15 | 13 14 | sselii | ⊢ abs  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  abs  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 17 |  | cncombf | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℂ  ∧  abs  ∈  ( ℂ –cn→ ℂ ) )  →  ( abs  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  MblFn ) | 
						
							| 18 | 6 9 16 17 | syl3anc | ⊢ ( 𝜑  →  ( abs  ∘  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  MblFn ) | 
						
							| 19 | 8 18 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐵 ) )  ∈  MblFn ) | 
						
							| 20 | 7 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 21 | 20 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  ∈  ℝ* ) | 
						
							| 22 | 7 | absge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  ( abs ‘ 𝐵 ) ) | 
						
							| 23 |  | elxrge0 | ⊢ ( ( abs ‘ 𝐵 )  ∈  ( 0 [,] +∞ )  ↔  ( ( abs ‘ 𝐵 )  ∈  ℝ*  ∧  0  ≤  ( abs ‘ 𝐵 ) ) ) | 
						
							| 24 | 21 22 23 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 25 |  | 0e0iccpnf | ⊢ 0  ∈  ( 0 [,] +∞ ) | 
						
							| 26 | 25 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝑥  ∈  𝐴 )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 27 | 24 26 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 29 | 28 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 30 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 32 | 7 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 33 | 32 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 34 | 33 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ ( ℜ ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 35 | 33 | absge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ) | 
						
							| 36 |  | elrege0 | ⊢ ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  ∈  ( 0 [,) +∞ )  ↔  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  ∈  ℝ  ∧  0  ≤  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ) ) | 
						
							| 37 | 34 35 36 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ ( ℜ ‘ 𝐵 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 38 |  | 0e0icopnf | ⊢ 0  ∈  ( 0 [,) +∞ ) | 
						
							| 39 | 38 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝑥  ∈  𝐴 )  →  0  ∈  ( 0 [,) +∞ ) ) | 
						
							| 40 | 37 39 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 42 | 7 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 43 | 42 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 44 | 43 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ ( ℑ ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 45 | 43 | absge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 46 |  | elrege0 | ⊢ ( ( abs ‘ ( ℑ ‘ 𝐵 ) )  ∈  ( 0 [,) +∞ )  ↔  ( ( abs ‘ ( ℑ ‘ 𝐵 ) )  ∈  ℝ  ∧  0  ≤  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 47 | 44 45 46 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ ( ℑ ‘ 𝐵 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 48 | 47 39 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 50 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) ) ) | 
						
							| 51 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) ) | 
						
							| 52 | 31 41 49 50 51 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) ) ) | 
						
							| 53 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 )  =  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ) | 
						
							| 54 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 )  =  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 55 | 53 54 | oveq12d | ⊢ ( 𝑥  ∈  𝐴  →  ( if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) )  =  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 56 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 )  =  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 57 | 55 56 | eqtr4d | ⊢ ( 𝑥  ∈  𝐴  →  ( if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) | 
						
							| 58 |  | 00id | ⊢ ( 0  +  0 )  =  0 | 
						
							| 59 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 )  =  0 ) | 
						
							| 60 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 )  =  0 ) | 
						
							| 61 | 59 60 | oveq12d | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) )  =  ( 0  +  0 ) ) | 
						
							| 62 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 )  =  0 ) | 
						
							| 63 | 58 61 62 | 3eqtr4a | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) | 
						
							| 64 | 57 63 | pm2.61i | ⊢ ( if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) | 
						
							| 65 | 64 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  ( if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) | 
						
							| 66 | 52 65 | eqtr2di | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) )  =  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) ) ) | 
						
							| 67 | 66 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) ) ) ) | 
						
							| 68 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) ) | 
						
							| 69 | 7 | iblcn | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) ) ) | 
						
							| 70 | 2 69 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) ) | 
						
							| 71 | 70 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 72 | 1 2 68 71 32 | iblabslem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 73 | 72 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) )  ∈  MblFn ) | 
						
							| 74 | 41 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 75 | 72 | simprd | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 76 |  | eqid | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) | 
						
							| 77 | 70 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 78 | 1 2 76 77 42 | iblabslem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 79 | 78 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) )  ∈  MblFn ) | 
						
							| 80 | 49 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 81 | 78 | simprd | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 82 | 73 74 75 79 80 81 | itg2add | ⊢ ( 𝜑  →  ( ∫2 ‘ ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) ) )  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) ) )  +  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) ) ) ) | 
						
							| 83 | 67 82 | eqtrd | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) )  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) ) )  +  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) ) ) ) | 
						
							| 84 | 75 81 | readdcld | ⊢ ( 𝜑  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℜ ‘ 𝐵 ) ) ,  0 ) ) )  +  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ,  0 ) ) ) )  ∈  ℝ ) | 
						
							| 85 | 83 84 | eqeltrd | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 86 | 34 44 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) )  ∈  ℝ ) | 
						
							| 87 | 86 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) )  ∈  ℝ* ) | 
						
							| 88 | 34 44 35 45 | addge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 89 |  | elxrge0 | ⊢ ( ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) )  ∈  ( 0 [,] +∞ )  ↔  ( ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) )  ∈  ℝ*  ∧  0  ≤  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) ) | 
						
							| 90 | 87 88 89 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 91 | 90 26 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 93 | 92 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 94 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 95 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  ( ℑ ‘ 𝐵 )  ∈  ℂ )  →  ( i  ·  ( ℑ ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 96 | 94 43 95 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( i  ·  ( ℑ ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 97 | 33 96 | abstrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ ( ( ℜ ‘ 𝐵 )  +  ( i  ·  ( ℑ ‘ 𝐵 ) ) ) )  ≤  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( i  ·  ( ℑ ‘ 𝐵 ) ) ) ) ) | 
						
							| 98 | 7 | replimd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  =  ( ( ℜ ‘ 𝐵 )  +  ( i  ·  ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 99 | 98 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  =  ( abs ‘ ( ( ℜ ‘ 𝐵 )  +  ( i  ·  ( ℑ ‘ 𝐵 ) ) ) ) ) | 
						
							| 100 |  | absmul | ⊢ ( ( i  ∈  ℂ  ∧  ( ℑ ‘ 𝐵 )  ∈  ℂ )  →  ( abs ‘ ( i  ·  ( ℑ ‘ 𝐵 ) ) )  =  ( ( abs ‘ i )  ·  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 101 | 94 43 100 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ ( i  ·  ( ℑ ‘ 𝐵 ) ) )  =  ( ( abs ‘ i )  ·  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 102 |  | absi | ⊢ ( abs ‘ i )  =  1 | 
						
							| 103 | 102 | oveq1i | ⊢ ( ( abs ‘ i )  ·  ( abs ‘ ( ℑ ‘ 𝐵 ) ) )  =  ( 1  ·  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 104 | 44 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ ( ℑ ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 105 | 104 | mullidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 1  ·  ( abs ‘ ( ℑ ‘ 𝐵 ) ) )  =  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 106 | 103 105 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( abs ‘ i )  ·  ( abs ‘ ( ℑ ‘ 𝐵 ) ) )  =  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 107 | 101 106 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ ( ℑ ‘ 𝐵 ) )  =  ( abs ‘ ( i  ·  ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 108 | 107 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) )  =  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( i  ·  ( ℑ ‘ 𝐵 ) ) ) ) ) | 
						
							| 109 | 97 99 108 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  ≤  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 110 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  =  ( abs ‘ 𝐵 ) ) | 
						
							| 111 | 110 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  =  ( abs ‘ 𝐵 ) ) | 
						
							| 112 | 56 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 )  =  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 113 | 109 111 112 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) | 
						
							| 114 | 113 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) ) | 
						
							| 115 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 116 | 115 | a1i | ⊢ ( ¬  𝑥  ∈  𝐴  →  0  ≤  0 ) | 
						
							| 117 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  =  0 ) | 
						
							| 118 | 116 117 62 | 3brtr4d | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) | 
						
							| 119 | 114 118 | pm2.61d1 | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) | 
						
							| 120 | 119 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) | 
						
							| 121 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 122 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) ) | 
						
							| 123 | 31 28 92 121 122 | ofrfval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) )  ↔  ∀ 𝑥  ∈  ℝ if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) ) | 
						
							| 124 | 120 123 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) ) | 
						
							| 125 |  | itg2le | ⊢ ( ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) ) ) | 
						
							| 126 | 29 93 124 125 | syl3anc | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) ) ) | 
						
							| 127 |  | itg2lecl | ⊢ ( ( ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( ( abs ‘ ( ℜ ‘ 𝐵 ) )  +  ( abs ‘ ( ℑ ‘ 𝐵 ) ) ) ,  0 ) ) ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 128 | 29 85 126 127 | syl3anc | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 129 | 20 22 | iblpos | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐵 ) )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐵 ) )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 130 | 19 128 129 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐵 ) )  ∈  𝐿1 ) |